Arrel     Temes     Book     Xerrades     Publicacions     Enllaços     Congressos     Història           

Privadesa de dades


Contingut:
Aquesta pàgina inclou transparències de diverses xerrades relacionades amb la privacitat de dades. Hi ha una pàgina amb les transparències corresponents al contingut del llibre:
  • V. Torra (2022) Guide to data privacy: Models, Technologies, Solutions. Springer. Link to Springer
Slides, code, etc. here
Uppsala:
Xerrada a la Cybersecurity Arena de la Universitat de Uppsala.
Manchester:
Xerrada al Departament d'Informàtica de la Universitat de Manchester. Announcement and abstract here
IEC:
Discurs de recepció com a membre corresponent de la Secció de Ciències i Tecnologia de l'Institut d'Estudis Catalans (IEC).
FrAIdays Umeå:
Talk on "Research directions on data privacy" at #frAiday talks.
CRT Foundations of Data Science:
Lecture for the second session in the Foundations of Data Science II training.
IEEE Chapter (Webinar):
Webinar for the IEEE Computer Society Chapter Sweden on May 31st, 2018. It presents an introduction to data privacy, discusses different privacy models (e.g., k-anonymity, differential privacy, and reidentification), and tools to provide solutions that are compliant to the privacy models. We will also discuss some research issues we are involved in.
NAV (Oslo):
Talk at NAV in Oslo on January 15th, 2018. Introduction to data privacy. The talk included examples of data protection in R. Protection of microdata (masking methods) and of tabular data. We used sdcMicro and sdcTable. Slides, code and example file used.
DPM2017:
Keynote talk in DPM 2017: Privacy models and disclosure risk: integral privacy.
HiS2017:
Data privacy: an introduction. Talk given in the U. of Skovde on February 2017.
Linköping 2016:
Short summary: How to use machine learning to evaluate the worst-case disclosure risk scenario, and what is the role of transparency in disclosure risk assessment.
IFIP2016:
This talk was about how to deal with data privacy in big data, from the point of view of data anonymization (data masking). The talk presents a few directions for future research. The talk was given in the IFIP Summer School 2016 (program here). A full paper corresponding to this talk is being published by Springer.
  • V. Torra, G. Navarro-Arribas (2016) Big Data Privacy and Anonymization, in A: Lehmann et al., Privacy and Identity Management 2016, IFIP AICT 498. Read it here (open access).

Uppsala 2016:
Short summary: How to use machine learning to evaluate the worst-case disclosure risk scenario, and what is the role of transparency in disclosure risk assessment.
Chalmers 2015:
Short summary: How to use machine learning to evaluate the worst-case disclosure risk scenario, and what is the role of transparency in disclosure risk assessment.
PAIS 2015:
Discussion on how transparency affects disclosure risk. When any release applies the transparency principle, we inform users on how the data has been processed (protected), and they can use this information to attack data more effectively. Information on the transparency principle can be found here.