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1. Computation-driven approaches

• Integral privacy
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Integral privacy
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Introduction > Integral privacy

Privacy models

Privacy models: for computations

• Privacy for re-identification (to data) + computation

• k-Anonymity (to data) + computation

• Differential privacy directly to the computation

We proposed

• Integral privacy
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Introduction > Integral privacy

Privacy models

Integral privacy: for a computation or algorithm f

• f(X) is private if there are different ways to reach f(X),

i.e., different databases X which are different enough.
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Integral privacy

Integral privacy: for computation f .

Some preliminaries . . .

• P the population, f be a function or algorithm that given a data set

S ⊆ P computes an output f(S) that belongs to another domain G.

• Given G in G, previous knowledge S∗ with S∗ ⊂ P ,

the set of possible generators of G is:

Gen(G,S∗) = {S′|S∗ ⊆ S′ ⊆ P, f(S′) = G}.

We use Gen∗(G,S∗) = {S′ \ S∗|S∗ ⊆ S′ ⊆ P, f(S′) = G}

(when no information is known on S∗, we use S∗ = ∅
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Integral privacy

Integral privacy: for function f , definition:

• P data, f : S → G, S∗ background knowledge, Gen(G,S∗)

databases that generate G and are consistent with background

knowledge S∗.

Then, integral privacy is satisfied when Gen(G,S∗) is large and

diverse.
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Introduction > Integral privacy

Integral privacy

Integral privacy: for function f , definition:

• P data, f : S → G, S∗ background knowledge, Gen(G,S∗)

databases that generate G and are consistent with background

knowledge S∗.

Then, integral privacy is satisfied when Gen(G,S∗) is large=at least

k databases and diverse:

∩g∈Gen∗(G,S∗)g = ∅.

Requirements: why? / what?

• Empty intersection to avoid all generators sharing a record

(e.g., avoiding membership inference attacks)

• Gen(G,S∗) large. large = k-flavor.
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Integral privacy vs Differential privacy

Integral privacy, and differential privacy

• Differential privacy, smooth function

f(D) ∼ f(D ⊕ x) where D ⊕ x means to add the record x to D

• Integral privacy, recurrent function

If f−1(G) is the set of all (real) databases that can generate the

output G, we require f−1(G) to be a large and diverse set for G.
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Introduction > Integral privacy

Integral privacy vs Differential privacy

Integral privacy, and differential privacy

• Differential privacy, smooth function

f(D) ∼ f(D ⊕ x) where D ⊕ x means to add the record x to D

• Integral privacy, recurrent function

If f−1(G) is the set of all (real) databases that can generate the

output G, we require f−1(G) to be a large and diverse set for G.

• Simple integrally private function:

f an algorithm that is 1 if the number of records in D is even, and 0

if the number of records in D is odd.

That is, f(D) = 1 if and only if |D| is even.
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Integral privacy vs Differential privacy

Pros and cons:

• Cons:

◦ If S∗ is all population P but a record. Not “strong” guarantees.

• Pros:

◦ Integral privacy, and plausible deniability

⊲ IP satisfies plausible deniability if for any record r in P such that

r /∈ S∗, there is a set/database σ ∈ Gen∗(G,S∗) such that r /∈ σ.

◦ Our definition satisfies plausible deniability
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Integral privacy

Finding. Recurrent models appear also in machine learning

• Recurrent models? Large set of generators

• Generators? DB generator of m1 if f(DB) = m1

Decision trees with Iris dataset. Models/freq.
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Introduction > Integral privacy

Integral privacy

Finding N. 1. Recurrent models appear also in machine learning

Finding N. 2. Recurrent models may have good accuracy

• accuracy + frequency. DT with Iris. Acc./freq.
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IP means

Integrally private means
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IP means >

Integral privacy

How to implement IP mean (numerical database)

• Round numbers in the database

◦ All number multiples of r

• Sample the database and build subsets

• Compute means of subsets

• Take a frequent mean such that satisfies the privacy constraints

E.g., at least k generators with empty intersection
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IP means >

Integral privacy

How to implement IP mean (numerical database)

• k is a privacy requirement, and relates to distortion

◦ larger k, larger distortion

• Larger r in rounding, larger distortion

• Amount of distortion also depends on the query

◦ See mean vs. maximum / minimum

(to produce the same maximum we will need larger rounding)
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IP models

Integrally private ML models
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IP models >

Integral privacy

How to implement ML models

• Sampling the database (DT)

◦ Create databases from the original database

◦ Create models m for each database db

(db = generator of m)

◦ Compare models and generators

• Partition the database (SVM, DL)

◦ Create a database from each part

◦ Create models

◦ If the models are the same, by construction they satisfy the privacy

constraints

(or models similar enough)
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IP clustering

Integrally private clustering
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IP clustering > κ c-means

κ-centroid c-means
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IP clustering > κ c-means

Formalization of the problem

Informal description:

• Database X

• Macro-clusters: c

• Micro-clusters: κ

So, c× κ disjoint groups or parts

• Macro-clusters are distinct and distant

• Micro-clusters of a macro-cluster are similar and overlapping in the

data space
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IP clustering > κ c-means

Formalization of the problem

Data and parameters:

• Database X

• Macro-clusters: c

• Micro-clusters: κ

Data points and clusters:
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IP clustering > κ c-means

Formalization of the problem

Notation

• centroids: vjk for j = 1, . . . , c and k = 1, . . . , κ be the centroid of

kth micro-centroid of the jth macro-cluster.

• assignment: µjk(x) represent the membership of x to the kth micro-

centroid of the jth macro-cluster. We assume µjk ∈ {0, 1}.
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IP clustering > κ c-means

Formalization of the problem

Parameters: X,
A (difference on number of records), δ (distance for centroids)

min J(µ, v) =
∑c

j=1

∑κ

k=1

∑
x∈X µjk(x)||x− vjk||

2

subject to
∑c

j=1

∑κ

k=1 µjk(x) = 1 for all x ∈ X
|
∑

x∈X µjk1(x)−
∑

x∈X µjk2(x)| ≤ A
for all j ∈ {1, . . . , c}, k1 6= k2 ∈ {1, . . . , κ}

||vjk1 − vjk2||
2 ≤ δ

for all j ∈ {1, . . . , c}, k1 6= k2 ∈ {1, . . . , κ}
µjk(x) ∈ {0, 1}

for all j ∈ {1, . . . , c}, k ∈ {1, . . . , κ}, and x ∈ X
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IP clustering > Experiments

Experiments
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IP clustering > Experiments

Experiments

Implementation:

• (Clustering +) Genetic algorithms

• MDAV to produce k-size clusters

so all clusters have the same number of records,

better partition of macro-clusters into micro-clusters

(better approximation of δ)

Parameters: δ = 0.0005, A = 5

(5 runs, 100 epochs; c = 2, κ = 3 also c = 4, κ = 10)

Dataset: Concrete and CASC
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IP clustering > Experiments

Experiments

Example: Concrete, c = 2, κ = 3

(best top,mean bottom; random (left) and MDAV (right)
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IP clustering > Discussion

Discussion

Vicenç Torra; Privacy for computations 27 / 30



IP clustering > Discussion

Discussion

Discussion:

• Solution satisfies integral privacy constraints (κ parts with empty

intersection); but,

• the optimization with κ 6= 1 and the full dataset X, and a reduced

problem (say Xk) with one of the subsets, may lead to different

results; but,

◦ separated enough clusters will produce same results for X and Xk,

◦ clustering algorithms lead to local optimal,

• So, maybe good enough?
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IP clustering > Discussion

Discussion

Discussion:

• Database changes. We want models that do not change.
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Thank you
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