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Integral privacy
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Introduction > Integral privacy

Privacy models

Privacy models: for computations

e Privacy for re-identification (to data) 4+ computation
e k-Anonymity (to data) + computation
e Differential privacy directly to the computation

We proposed

e Integral privacy
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Introduction > Integral privacy

Privacy models

Integral privacy: for a computation or algorithm f

e f(X) is private if there are different ways to reach f(X),
I.e., different databases X which are different enough.
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Integral privacy

Integral privacy: for computation f.

Some preliminaries ...

e P the population, f be a function or algorithm that given a data set
S C P computes an output f(S) that belongs to another domain G.
e Given (G in G, previous knowledge S* with S* C P,
the set of possible generators of G is:

Gen(G,S*) ={S'|S* C S"C P, f(5) = G}.

We use Gen*(G, %) = {8\ §*|S* C §' C P, f(S') = G}

(When no information is known on S*, we use S* = ()
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Introduction > Integral privacy

Integral privacy

Integral privacy: for function f, definition:

e P data, f : S — G, S* background knowledge, Gen(G,S*)
databases that generate G and are consistent with background

knowledge S*.
Then, integral privacy is satisfied when Gen(G,S*) is large and

diverse.
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Introduction > Integral privacy

Integral privacy

Integral privacy: for function f, definition:

e P data, f : S — G, S* background knowledge, Gen(G,S*)
databases that generate G and are consistent with background
knowledge S*.

Then, integral privacy is satisfied when Gen(G, S*) is large=at least
k databases and diverse:

ngGen*(G,S*)g = 0.

Requirements: why? / what?

e Empty intersection to avoid all generators sharing a record
(e.g., avoiding membership inference attacks)
o Gen(G,S*) large. large = k-flavor.
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Integral privacy vs Differential privacy

Integral privacy, and differential privacy

e Differential privacy, smooth function
f(D) ~ f(D & x) where D & x means to add the record x to D

e Integral privacy, recurrent function
If f~1(G) is the set of all (real) databases that can generate the
output G, we require f~1(G) to be a large and diverse set for G.
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Introduction > Integral privacy

Integral privacy vs Differential privacy

Integral privacy, and differential privacy

e Differential privacy, smooth function
f(D) ~ f(D & x) where D & x means to add the record x to D

e Integral privacy, recurrent function
If f~1(G) is the set of all (real) databases that can generate the
output G, we require f~1(G) to be a large and diverse set for G.

e Simple integrally private function:
f an algorithm that is 1 if the number of records in D is even, and 0
if the number of records in D is odd.
That is, f(D) =1 if and only if |D| is even.
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Introduction > Integral privacy

Integral privacy vs Differential privacy

Pros and cons:

e Cons:
o If S* is all population P but a record. Not “strong” guarantees.
e Pros:
o Integral privacy, and plausible deniability
> |P satisfies plausible deniability if for any record r in P such that

r & S*, there is a set/database 0 € Gen*(G, S*) such that r ¢ o.
o Our definition satisfies plausible deniability
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Introduction > Integral privacy

Integral privacy

Finding. Recurrent models appear also in machine learning

e Recurrent models? Large set of generators
e Generators? DB generator of mq if f(DB) = m;

Decision trees with Iris dataset. Models/freq.
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Integral privacy

Finding N. 1. Recurrent models appear also in machine learning

Finding N. 2. Recurrent models may have good accuracy

e accuracy + frequency. DT with Iris. Acc./freq.
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IP means

Integrally private means
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IP means >

Integral privacy

How to implement IP mean (numerical database)

e Round numbers in the database
o All number multiples of r

e Sample the database and build subsets

e Compute means of subsets

e Take a frequent mean such that satisfies the privacy constraints
E.g., at least k generators with empty intersection
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IP means >

Integral privacy

How to implement IP mean (numerical database)

e k is a privacy requirement, and relates to distortion
o larger k, larger distortion
e Larger r in rounding, larger distortion
e Amount of distortion also depends on the query
o See mean vs. maximum / minimum
(to produce the same mazimum we will need larger rounding)
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IP models

Integrally private ML models
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IP models >

Integral privacy

How to implement ML models

e Sampling the database (DT)
o Create databases from the original database
o Create models m for each database db
(db = generator of m)
o Compare models and generators
e Partition the database (SVM, DL)
o Create a database from each part
o Create models
o If the models are the same, by construction they satisfy the privacy
constraints
(or models similar enough)
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IP clustering

Integrally private clustering
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k-centroid c-means
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IP clustering > Kk c-means

Formalization of the problem

Informal description:

e Database X
e Macro-clusters: ¢
e Micro-clusters: K

So, ¢ X k disjoint groups or parts

e Macro-clusters are distinct and distant
e Micro-clusters of a macro-cluster are similar and overlapping in the
data space
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IP clustering > Kk c-means

Formalization of the problem

Data and parameters:

e Database X

e Macro-clusters: ¢
e Micro-clusters: K

Data points and clusters:
X
% O
O
(D -
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IP clustering > k c-means

Formalization of the problem

Notation

e centroids: v, for 7 =1,...,cand k£ =1,...,k be the centroid of
kth micro-centroid of the jth macro-cluster.

e assignment: p;x(x) represent the membership of = to the kth micro-
centroid of the jth macro-cluster. We assume i, € {0, 1}.
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IP clustering > Kk c-means

Formalization of the problem

Parameters: X,
A (difference on number of records), J (distance for centroids)

min J(,v) = 3551 3 D wex Hik(@)llz — vgil
subject to ) 1Zk 1u3k( J=1forallx e X
TSm0 o) < A
forallj c{l,...,c}, k1 #Z ko€ {1,... K}
[0jk) — Vi |* < 6
forall j € {1,...,c}, kv # ko € {1,... Kk}
,ujk(x) €{0,1}
forall j e {l,...,c}, ke{l,...,k},andz € X
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IP clustering > Experiments

Experiments
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IP clustering > Experiments

Experiments

Implementation:

e (Clustering +) Genetic algorithms

e MDAV to produce k-size clusters
so all clusters have the same number of records,
better partition of macro-clusters into micro-clusters
(better approximation of §)

Parameters: 0 = 0.0005, A =5
(5 runs, 100 epochs; ¢ = 2,k = 3 also ¢ = 4,k = 10)

Dataset: Concrete and CASC
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IP clustering > Experiments

Experiments

Example: Concrete, c=2,k =3
(best top,mean bottom; random (left) and MDAV (right)
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IP clustering > Discussion

Discussion
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IP clustering > Discussion

Discussion

Discussion:

e Solution satisfies integral privacy constraints (kx parts with empty

intersection); but,
e the optimization with x # 1 and the full dataset X, and a reduced

problem (say X}j) with one of the subsets, may lead to different

results: but,
o separated enough clusters will produce same results for X and Xy,

o clustering algorithms lead to local optimal,
e S0, maybe good enough?
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IP clustering > Discussion

Discussion

Discussion:

e Database changes. We want models that do not change.

Vicen¢ Torra; Privacy for computations 29 / 30



Thank you
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