## Software: ## (c) Vicenç Torra ## Current version: 20250110 ## ## Software for non-additive measures and integrals ## (these measures are also known as fuzzy measures, monotonic games, ## and include belief functions, k-additive measures, ## distorted probabilities) ## Software includes Choquet and Sugeno integrals, ## measure identification from examples, ## Shapley values, Upsilon values (originally called tau), ## and other indices (interactions), transforms, etc. ## ## ## This software is similar and extends previous software in R ## http://www.mdai.cat/ifao/prog.ifao.models.r ## ## About measure identification, most recent reference: ## E. Turkarslan, V. Torra (2022) Measure Identification for the ## Choquet integral: a Python module, Int. J. of ## Comp. Intel. Systems 15:89 (2022) ## https://doi.org/10.1007/s44196-022-00146-w ## ## References on aggregation functions: ## V. Torra, Y. Narukawa (2007) Modeling Decisions, Springer. ## References on the Upsilon values: ## V. Torra (2024) $\Upsilon$-Values: Power Indices à La Orness for ## Nonadditive Measures. IEEE Trans. Fuzzy Syst. 32:7 4099-4108 ## https://doi.org/10.1109/TFUZZ.2024.3392268 ## References on the (max,+)-transform: ## V. Torra, (Max,\oplus)-transforms and genetic algorithms for ## fuzzy measure identification, ## Fuzzy Sets and Systems 451 (2022) 253-265 ## https://doi.org/10.1016/j.fss.2022.09.008 ## References on the WOWA: ## V. Torra, The Weighted OWA operator, Int. J. of Intel. Systems, ## 12 (1997) 153-166. ## http://dx.doi.org/10.1002/(SICI)1098-111X(199702)12:2<153::AID-INT3>3.0.CO;2-P ## Original interpolation: ## V. Torra, The WOWA operator and the interpolation function W*: Chen and ## Otto's interpolation method revisited, Fuzzy Sets and Systems, 113:3 ## (2000) 389-396. http://dx.doi.org/10.1016/S0165-0114(98)00040-2 ## Discussion on intepolation functions ## V. Torra, Z. Lv, On the WOWA operator and its interpolation function. ## Int. J. Intell. Syst. 2:(1 (2009): 1039-105 ## http://dx.doi.org/10.1002/int.20371 ## An overview of the WOWA and related results: ## V. Torra, The WOWA Operator: A Review, in R. R. Yager, J. Kacprzyk, ## G. Beliakov (eds.) Recent Developments in the Ordered Weighted ## Averaging Operators, Springer 2011 17-28. ## https://doi.org/10.1007/978-3-642-17910-5_2 ## import random import numpy as np import numpy.linalg as lina import matplotlib.pyplot as plt import statistics import math import sklearn import time ## Necessary to solve the quadratic problem with constraints: ## $ pip install cvxopt ## from cvxopt import matrix, solvers ## import cvxopt.matrix as co.matrix import cvxopt as opt ## exec(open("prog.vectors.matrices.web.txt").read()) ## ----------------------------------------------------- ## Aggregation functions: AM, WM, OWA, QWM, WOWA ## ----------------------------------------------------- def ciAM (data): return sum(data)/len(data) def ciWM (data, w): """ Function: Weighted mean Example: ciWM([1,2,3,4],[0.1,0.2,0.3,0.4]) ciWM([1,2,3,4],[0.25,0.25,0.25,0.25]) """ return sum(map(lambda x,y:x*y, data, w)) def ciHM (data, w): return 1/sum(map(lambda x,w:w/x, data,w)) def ciOWA (data, p): """ Function: OWA operator Example: ciOWA([1,3,2,4],[0.1,0.2,0.3,0.4]) ## 2.0 ciOWA([1,2,3,4],[0.25,0.25,0.25,0.25]) ## 2.5 ciOWA([1,4,3,2],[0,1,0,0]) ## 3 -- 2nd largest """ return sum(map(lambda x,y:x*y, sorted(data, reverse=True), p)) def ciQWM (data, w, f, fm1): """ Function: Weighted mean Example: ciQWM([1,2,3,4],[0.1,0.2,0.3,0.4], lambda x:x, lambda x:x) ciQWM([1,2,3,4],[0.25,0.25,0.25,0.25], lambda x:x, lambda x:x) ciQWM([1,2,3,4],[0.1,0.2,0.3,0.4], lambda x:x*x, lambda x:math.sqrt(x)) ciQWM([1,2,3,4],[0.25,0.25,0.25,0.25], lambda x:x*x, lambda x:math.sqrt(x)) """ return fm1(sum(map(lambda x,y:f(x)*y, data, w))) def ciPartialSum (v): """ Function: Given a vector (x_1, x_2, ..., x_i, ..., x_n) returns the vector (x_1, x_1+x_2, ..., \sum_{j<=i} x_j, ..., \sum x_j) Input: v: a vector (x_1, ..., x_n) Output: a vector of partial sums Example: ciPartialSum([1,2,3,4]) """ acc = 0 cpv = [] for i in range(0,len(v)): acc = acc + v[i] cpv.append(acc) return(cpv) def ciEvalLinearQ (w, x): """ Function: # A function for linear interpolation and evaluation at a given point # interpolates points {(0,0)} \cup {(i/n, \sum_{j<=i} x_j)}_{i=1, ..., n} # This function is used to compute the function w* in WOWA Input: # w: the vector (w_1, ..., w_n) # in WOWA w_i should be positive and add to one # x: a point where to evaluate the interpolation function # in WOWA x \in [0,1] Output: the evaluation of the interpolated polynomial at x Example: ciEvalLinearQ([0.1,0.2,0.3,0.4],0.2) """ if (x<=0): return 0 elif (x>=1): return 1 else: n = len(w) accw = ciPartialSum(w) i = 0 while (x>i/n): i=i+1 i = i-1 if i==0: return x*(accw[0])/(1/n) else: return (accw[i-1] + (x-i/n)*(accw[i]-accw[i-1])/(1/n)) def ciLinearQ (w): """ Example: # ciLinearQ([0.1,0.2,0.3,0.4])(0.5) # list(map(ciLinearQ([0.2,0.3,0.4,0.1]),[0.1,0.2,0.3,0.4,0.5])) """ return lambda x: ciEvalLinearQ(w,x) def ciWOWA (data, owaWeightsVect, wmWeightsVect): """ Function: # The WOWA operator (with w* defined by means of a linear interpolation) Input: # data: vector of data elements (a_1, ..., a_n) # owaWeightsVect: vector of OWA weights (w_1, ..., w_n) # wmWeightsVect: vector of weights (p_1, ..., p_n) Output: # \sum a_{\sigma(i)}*\omega_i # (where \sigma is a permutation such that a_{\sigma(i-1)}>=a_{\sigma(i)} # \omega_i=w*(\sum_{j\leq i}p_{\sigma(j)}) - w*(\sum_{j[0,1] # wmWeightsVect: vector of weights (p_1, ..., p_n) Output: # \sum a_{\sigma(i)}*\omega_i # (where \sigma is a permutation such that a_{\sigma(i-1)}>=a_{\sigma(i)} # \omega_i=w*(\sum_{j\leq i}p_{\sigma(j)}) - w*(\sum_{j=0.75 else x/0.75 ## This is equivalent to the OWA_q # ciWOWAq([0.5,0.25,0.8,0.0,0.75],ciQQ1,[0.2,0.2,0.2,0.2,0.2]) # 0.6887180338897262 # ciWOWAq([0.5,0.25,0.8,0.0,0.75],ciQQ2,[0.2,0.2,0.2,0.2,0.2]) # 0.5000000000000001 # ciWOWAq([0.5,0.25,0.8,0.0,0.75],ciQQ3,[0.2,0.2,0.2,0.2,0.2]) # 0.14128000000000004 # ciWOWAq([0.5,0.25,0.8,0.0,0.75],ciQQ4,[0.2,0.2,0.2,0.2,0.2]) # 0.4600000000000001 # ## Example 6.16 @ V. Torra, Y. Narukawa (2007) Modeling decisions, Springer. # ciWOWAq([0.5,0.25,0.8,0.0,0.75],ciQQ1,ciP1) # 0.7526147305039615 # ciWOWAq([0.5,0.25,0.8,0.0,0.75],ciQQ2,ciP1) # 0.5 # ciWOWAq([0.5,0.25,0.8,0.0,0.75],ciQQ1,ciP2) # 0.579140525818457 # ciWOWAq([0.5,0.25,0.8,0.0,0.75],ciQQ2,ciP2) # 0.7083333333333333 ## ----------------------------------------------------------------- ## Choquet integral and Sugeno integral ## computation from fuzzy measure and computation from Mobius transform ## ----------------------------------------------------------------- def choquetIntegral (f, fm): """ Function: compute the Choquet integral of the function f w.r.t fm Input: f: function to be integrated fm: fuzzy measure *NOTE*: order of the elements in f, same in the measure Output: the Choquet integral of f with respect to fm Examples: choquetIntegral([0,0.5,1,1],fmW) #// Output 0.4666 choquetIntegral([0.5,0.5,0.5,0.5],fmW) #// Output 0.5 choquetIntegral([1,0.5,0,0.5],fmW) #// Output 0.8333 choquetIntegral([1,0.5,0.5,0.5],fmW) #// Output 0.8333 choquetIntegral([0.5,1,1,0.5],fmW) #// Output 0.8 choquetIntegral([1,1,0.5,1],fmW) #// Output 1.0 """ items = list(map(lambda i: 2**(len(f)-1-i), range(0,len(f)))) # 2^(n-1), .. 4,2,1 (fSorted, itemsSorted) = sortWithOneListIncreasing (f.copy(), items) # f_{s(i)} total = fSorted[0] fmOfSetItems = 2**(len(f))-1 i = 1 while (i fm([0,0,1,0,1])) *NOTE*: order of the elements in f, same in the measure Output: the Choquet integral of f with respect to fm Examples: choquetIntegralFMasFunction([0,0.5,1,1],lambda s:fmW[set2Int(s)]) #// Output 0.4666 choquetIntegralFMasFunction([0.5,0.5,0.5,0.5],lambda s:fmW[set2Int(s)]) #// Output 0.5 choquetIntegralFMasFunction([1,0.5,0,0.5],lambda s:fmW[set2Int(s)]) #// Output 0.8333 choquetIntegralFMasFunction([1,0.5,0.5,0.5],lambda s:fmW[set2Int(s)]) #// Output 0.8333 choquetIntegralFMasFunction([0.5,1,1,0.5],lambda s:fmW[set2Int(s)]) #// Output 0.8 choquetIntegralFMasFunction([1,1,0.5,1],lambda s:fmW[set2Int(s)]) #// Output 1.0 """ items = list(range(0,len(f))) # X={0,...,N-1} (fSorted, itemsSorted) = sortWithOneListIncreasing (f.copy(), items) # f_{s(i)} setItems = [1]*len(f) # A_{s(1)} = all elements # fmOfSetItems = set2Int(setItems) total = fSorted[0] * fm(setItems) i = 1 while (ikAdditive: thisEq = [0.0]*(2**n) thisEq[set2IntA]=-1.0 alleqs.append(thisEq) nalleqs = list(map(lambda x:x[1:], alleqs)) # print("additive:") # print(nalleqs) return(nalleqs, [0.0]*len(alleqs)) def buildEquationsShapley (n, shapley): """ Function: Build equations for the Shapley values. Position corresponding to emptyset removed. Example: buildEquationsShapley(4,[0.25,0.25,0.25,0.25]) """ eqShapley = [[0.0]*(2**n) for i in range(n)] # shapley = [0]*n # mySetA = firstSet(n) set2IntA = 0 while notLastSet(mySetA): mySetA = nextSet(mySetA, n) set2IntA = set2IntA+1 # s = nElemsSet(mySetA, n) # print("s"+str(s)+",s!="+str(sfactor)) for i in range(0,n): if belongSet(i, mySetA, n): eqShapley[i][set2IntA]=(1/s) ## shapley[i]=shapley[i] + (1/s)*(moebius[set2IntA]) # print(shapley) neqShapley = list(map(lambda x:x[1:], eqShapley)) return((neqShapley, shapley)) # qp(P, q, G=None, h=None, A=None, b=None, solver=None, kktsolver=None, initvals=None, **kwargs) # Solves a quadratic program # # minimize (1/2)*x'*P*x + q'*x # subject to G*x <= h # A*x = b. # old name of this function: create_solution def ciSolveMSE (matrixDataWithOutput, belief=False, kAdditive=False, shapleyValue=False): """ Function: Return the solution of the optimization problem (i.e., the Moebius transform of a fuzzy mesure that minimizes the error -- MSE) Example: data85_B_sol_prob = ciSolveMSE(data85, belief=False, kAdditive=2) """ n = len(matrixDataWithOutput[0])-1 Q,q = buildOFMoebius (matrixDataWithOutput) nVars = len(Q) mQ=opt.matrix(np.array(Q)) mb=opt.matrix(q, (nVars, 1)) G,h = buildEquationsMoebius (n) if belief: posG, posH = buildEquationsMoebiusPositive(nVars) G = G + posG h = h + posH nConstraints = len(G) mG=opt.matrix(np.array(G)) mh=opt.matrix(h, (nConstraints, 1)) addOne = [[1.0]*nVars] addOneLeft = [1.0] if shapleyValue!=False: shapleyEqLeft, shapleyEqRight = buildEquationsShapley (n, shapleyValue) addOne = shapleyEqLeft ## If shapley, we do not need \sum m = 1 addOneLeft = shapleyEqRight ## it is implicit as \sum shapley = 1 #print("nVars="+str(nVars)) #print(addOne) #print(addOneLeft) #print("addOne="+str(len(addOne))) #print("addOneLeft="+str(len(addOneLeft))) #print(len(addOne[0])) #print(len(addOne[1])) if kAdditive!=False: zeroMEq, zeroMLeft = buildEquationsKAdditive(n, kAdditive) addOne = addOne + zeroMEq addOneLeft = addOneLeft + zeroMLeft # print("addOne=") # print(addOne) mEA = opt.matrix(transpose(addOne)) mEb = opt.matrix(addOneLeft, (len(addOne), 1)) #print("mEA="+str(mEA)) #print("mEb="+str(mEb)) sol = opt.solvers.qp(mQ, mb, G=mG, h=mh, A=mEA, b=mEb) return(sol) def ciFindMoebiusCIwithMSE (matrixDataWithOutput, belief=False, kAdditive=False, shapleyValue=False): """ Function: Find the Moebius transform that minimizes MSE for a dataset. Returns:(0) the Moebius transform, (1) the solution of the optimization problem Example: data85_B_Mob = ciFindMoebiusCIwithMSE(data85, belief=False, kAdditive=2) """ this_sol = ciSolveMSE (matrixDataWithOutput, belief=belief, kAdditive=kAdditive, shapleyValue=shapleyValue) return (([0]+list(this_sol['x']), this_sol)) def ciFindMoebius (matrixDataWithOutput, belief=False, kAdditive=False, shapleyValue=False): """ Function: Find the Moebius transform that minimizes MSE for a dataset. Example: data85_B_Mob = ciFindMoebius(data85, belief=False, kAdditive=2) """ this_sol = ciSolveMSE (matrixDataWithOutput, belief=belief, kAdditive=kAdditive, shapleyValue=shapleyValue) return ([0]+list(this_sol['x'])) ## Version: 20230623 def ciModel_of (matrixDataWithOutput, moebius): ## (numInstancesClass, classesPerDevice, nCopies): """ Function: value of the objective function Output: err: \sum_i (CI(x_i)-y_i)^2 -- computed in matrix form from Mobius erSq: \sum_i (CI(x_i)-y_i)^2 vErr: [(CI(x_1)-y_1), ..., (CI(x_n)-y_n)] prediction: [CI(x_1), ..., CI(x_n)] Example: ciModel_of(data85, data85Moebius) """ Q,q = buildOFMoebius (matrixDataWithOutput) n = len(matrixDataWithOutput[0])-1 vecy = list(map(lambda row: row[n], matrixDataWithOutput)) #print("partial results") #print("1:"+str(matrixProduct(transpose(vec2mat(vecy)),vec2mat(vecy)))) #print("2:"+str(matrixProduct(transpose(vec2mat(q)), vec2mat(moebius[1:])))) #print("3:"+str(matrixProductConstant(matrixProduct(transpose(vec2mat(moebius[1:])),matrixProduct(Q,vec2mat(moebius[1:]))),0.5))) err = matrixSum(matrixProduct(transpose(vec2mat(vecy)),vec2mat(vecy)), matrixSum(matrixProduct(transpose(vec2mat(q)), vec2mat(moebius[1:])), matrixProductConstant(matrixProduct(transpose(vec2mat(moebius[1:])), matrixProduct(Q,vec2mat(moebius[1:]))),0.5))) prediction = list(map(lambda inps: ciFromMoebius (inps[:-1], moebius) , matrixDataWithOutput)) vErr = list(map(lambda inps, out: ((ciFromMoebius (inps[:-1], moebius)) - out), matrixDataWithOutput, vecy)) erSq = vectorProduct(vErr, vErr) return(err, erSq, vErr, prediction) def ciFindOWAweights (matrixDataWithOutput): """ Function: Find the OWA weights that minimizes MSE for the OWA. This can be used later to build a symmetric measure. Example: ciFindOWAweights (data85) """ sortedMatrix = list(map(lambda r: sorted(r[:-1], reverse=True)+[r[-1]], matrixDataWithOutput)) mobius = ciFindMoebius(sortedMatrix, belief=False, kAdditive=1) symmetricWeights = list(map(lambda i:mobius[2**i],range(len(matrixDataWithOutput[0])-1))) symmetricWeights.reverse() return symmetricWeights def ciFindMoebiusOWA (matrixDataWithOutput): """ Function: Find the Moebius transform that minimizes MSE for the OWA. This is a symmetric measure. """ owaWeights = ciFindOWAweights (matrixDataWithOutput) fm = ciBuildSymmetric (owaWeights) return fromFM2Moebius (fm, len(matrixDataWithOutput[0])-1) def ciFindWMweights (matrixDataWithOutput): """ Function: Find the OWA weights that minimizes MSE for the OWA. This can be used later to build a symmetric measure. Example: ciFindWMweights (data85) """ mobius = ciFindMoebius(matrixDataWithOutput, belief=False, kAdditive=1) weights = list(map(lambda i:mobius[2**i],range(len(matrixDataWithOutput[0])-1))) weights.reverse() return weights ## ----------------------------------------------------- ## Functions to work with fuzzy measures ## ----------------------------------------------------- ## ## Functions to build a transform from a measure ## and to build the measure from a transform ## Function to normalize a fuzzy measure def fromMoebius2FM (moebius, n): """ Function: It computes the non-additive measure associated to a Moebius transform Example: fromMoebius2FM(fromFM2Moebius(fmW,4),4) fromMoebius2FM(fromFM2Moebius(fmM,4),4) """ fm=[0]*(2**n) mySetA = firstSet(n) set2IntA = 0 while notLastSet(mySetA): mySetA = nextSet(mySetA, n) set2IntA = set2IntA+1 # Consider B \subseteq A, they are in positions 0..set2IntA mySetB = firstSet(n) set2IntB = 0 while not(equalSets(mySetA, mySetB,n)): mySetB = nextSet(mySetB, n) set2IntB = set2IntB+1 if subseteq(mySetB, mySetA, n): fm[set2IntA]=fm[set2IntA]+moebius[set2IntB] return(fm) def fromFM2Moebius (fm, n): """ Function: It computes the Moebius transform of a non-additive measure Example: fromFM2Moebius(fmW,4) fromFM2Moebius(fmM,4) """ moebius=[0]*(2**n) mySetA = firstSet(n) set2IntA = 0 while notLastSet(mySetA): mySetA = nextSet(mySetA, n) set2IntA = set2IntA+1 # Consider B \subseteq A, they are in positions 0..set2IntA mySetB = firstSet(n) set2IntB = 0 while not(equalSets(mySetA, mySetB,n)): mySetB = nextSet(mySetB, n) set2IntB = set2IntB+1 if subseteq(mySetB, mySetA, n): sign = (-1)**(abs(nElemsSet(mySetA,n) - nElemsSet(mySetB,n))) moebius[set2IntA]=moebius[set2IntA]+sign*fm[set2IntB] return(moebius) ## In java this function is called: computeMeasureMax def fromMaxSum2FM (maxSum, n): """ Function: This function transforms a (max,+)-transform into a FM Example: fromMaxSum2FM([0,1,2,5,10,3,7,11],3) fromMaxSum2FM([0.0,1.0,2.0,5.0,10.0,3.0,7.0,3.0],3) fromMaxSum2FM([0.0,0.1,0.4,0.2,0.5,0.0,0.2,0.3],3) """ measure = [0]*len(maxSum) mySetA = firstSet(n) set2IntA = 0 while notLastSet(mySetA): mySetA = nextSet(mySetA, n) set2IntA = set2IntA+1 # Consider B \subseteq A, they are in positions 0..set2IntA mySetB = firstSet(n) set2IntB=0 thisMeasure = 0 while set2IntB<(set2IntA-1): mySetB = nextSet(mySetB,n) set2IntB = set2IntB+1 if subseteq(mySetB, mySetA, n): thisMeasure = max(thisMeasure, measure[set2IntB]) measure[set2IntA]=thisMeasure + maxSum[set2IntA] return (measure) def fromFM2MaxSum (fm, n): """ Function: This function transforms a FM into a (max,+)-transform Example: fromFM2MaxSum([0, 1, 2, 7, 10, 13, 17, 28],3) fromFM2MaxSum([0, 1.0, 2.0, 7.0, 10.0, 13.0, 17.0, 20.0],3) fromFM2MaxSum([0, 0.1, 0.4, 0.6000000000000001, 0.5, 0.5, 0.7, 1.0],3) """ msTransf = [0]*len(fm) mySetA = firstSet(n) set2IntA = 0 while notLastSet(mySetA): mySetA = nextSet(mySetA, n) set2IntA = set2IntA+1 # Consider all subsets of mySet with one element less, take the max of fm fmNoElement = fm[set2Int(mySetA)] mySetACopyWElem = mySetA.copy() maxFMofSubsets = 0 for i in range(0,n): if belongSet(i, mySetA, n): mySetACopyWElem = removeElement2Set(i, mySetACopyWElem, n) maxFMofSubsets = max(maxFMofSubsets, fm[set2Int(mySetACopyWElem)]) # print("i="+str(i)+", sfactor="+str(sfactor)+" diff="+str(fm[set2Int(mySetACopyWElem)] - fmNoElement)) mySetACopyWElem = addElement2Set(i, mySetACopyWElem, n) msTransf[set2IntA]=fm[set2IntA]-maxFMofSubsets return (msTransf) def normalizeFM (fm): """ normalizeFM ([0.0,1.0,2.0,5.0,10.0,3.0,7.0,3.0]) """ lastPos = len(fm)-1 nFM = fm.copy() for i in range(0,len(fm)): nFM[i]=fm[i]/fm[lastPos] return(nFM) ## ----------------------------------------- ## -- Indices and evaluation methods --- ## ----------------------------------------- def ciShapley (fm,n): """ Function: Computation of the Shapley value of the fuzzy measure/game Example: ciShapley(fmM,4) ciShapley(fmO,4) ciShapley(fmW,4) """ shapley = [0]*n nf = math.factorial(n) # mySetA = firstSet(n) #set2IntA = 0 while notLastSet(mySetA): # s = nElemsSet(mySetA, n) sfactor = math.factorial(s)*(math.factorial(n-s-1))/nf # print("s"+str(s)+",s!="+str(sfactor)) fmNoElement = fm[set2Int(mySetA)] mySetACopyWElem = mySetA.copy() for i in range(0,n): if not(belongSet(i, mySetA, n)): mySetACopyWElem = addElement2Set(i, mySetACopyWElem, n) # print("index="+str(set2Int(mySetACopyWElem))) shapley[i]=shapley[i] + sfactor*(fm[set2Int(mySetACopyWElem)] - fmNoElement) # print("i="+str(i)+", sfactor="+str(sfactor)+" diff="+str(fm[set2Int(mySetACopyWElem)] - fmNoElement)) mySetACopyWElem = removeElement2Set(i, mySetACopyWElem, n) # ## print(shapley) mySetA = nextSet(mySetA, n) #set2IntA = set2IntA+1 return(shapley) def ciShapleyMoebius (moebius, n): """ Function: Computation of the Shapley value of the fuzzy measure/game given in terms of its Moebius transform Example: ciShapleyMoebius(fromFM2Moebius(fmZero,4),4) ciShapleyMoebius(fromFM2Moebius(fmOne,4),4) ciShapleyMoebius(fromFM2Moebius (fmM,4),4) ciShapleyMoebius(fromFM2Moebius (fmO,4),4) ciShapley(fmM,4) ciShapley(fmO,4) """ shapley = [0]*n # mySetA = firstSet(n) set2IntA = 0 while notLastSet(mySetA): mySetA = nextSet(mySetA, n) set2IntA = set2IntA+1 # s = nElemsSet(mySetA, n) # print("s"+str(s)+",s!="+str(sfactor)) for i in range(0,n): if belongSet(i, mySetA, n): shapley[i]=shapley[i] + (1/s)*(moebius[set2IntA]) # print(shapley) return(shapley) def ciInteraction (fm,n,vecIndicesS): """ Function: Computation of the interaction index of the fuzzy measure/game (fm), the number of elements in the reference set (n), and a given set S (vecIndicesS). The set is described by a list of indices. Example: ciInteraction(fmM,4,[0]) ciInteraction(fmM,4,[1]) ciInteraction(fmM,4,[2]) ciInteraction(fmM,4,[3]) ciInteraction(fmM,4,[0,1]) ciInteraction(fmO,4,[0]) ciShapley(fmO,4) ciInteraction(fmO,4,[0,1]) ciInteraction(fmO,4,[0,2]) """ vecIndicesNotS = [i for i in range(0,n) if i not in vecIndicesS] lNotS = len(vecIndicesNotS) lS = len(vecIndicesS) # print("S="+str(vecIndicesS)+", nS="+str(vecIndicesNotS)) nsfactor = math.factorial(n-lS+1) interaction = 0 # mySetTofNotS = firstSet(lNotS) # set2IntA = 0 # for cada subconjunt de NOTS: # while notLastSet(mySetTofNotS): for ii in range(0,2**lNotS): lT = nElemsSet(mySetTofNotS, lNotS) ssfact = math.factorial(n-lT-lS)*math.factorial(lT)/nsfactor # print("ssFact="+str(ssfact)) ss = 0 mySetKofS = firstSet(lS) # set2IntA = 0 # for cada subconjunt k de S: # while notLastSet(mySetKofS): for jj in range(0,2**lS): lK = nElemsSet(mySetKofS, lS) TcupK = setIndex2Set(setAllElems2ElemsInSet (mySetKofS, vecIndicesS)+ setAllElems2ElemsInSet (mySetTofNotS, vecIndicesNotS),n) # print("TcupK="+str(TcupK)+",mu(TcupK)="+str(fm[set2Int(TcupK)])) ss = ss + (-1)**(lS-lK) * fm[set2Int(TcupK)] mySetKofS = nextSet(mySetKofS, lS) #set2IntA = set2IntA+1 interaction = interaction + ssfact*ss mySetTofNotS = nextSet(mySetTofNotS, lNotS) #set2IntA = set2IntA+1 # print(mySetTofNotS) return(interaction) def ci2Interactions (fm,n): """ Function: It computes Shapley (i.e., interaction index of singletons) and the interaction index of two indices. Output: A matrix where position (i,i) represents the Shapley index and position (i,j) for i\neq j represents an interaction index. Examples: ciShapley(fmO,4) ciInteraction(fmO,4,[0,1]) ciInteraction(fmO,4,[0,2]) ciInteraction(fmO,4,[0,3]) ciInteraction(fmM,4,[0,3]) ci2Interactions (fmO,4) """ shapley = ciShapley (fm,n) mat = [] for i in range(0,n): matRow = [] for j in range(0,n): if j Q(w(set)) Example: """ return lambda mySet: Q(vectorProduct(mySet, w)) def ciBuildDP (Q,w): """ Function: Builds Distorted Probability Input: distortion/quantifier and probability, Ouput: an array for FM Examples: ciBuildDP(lambda x:x, [0.1,0.2,0.3,0.4]) ciBuildDP(lambda x:x*x, [0.1,0.2,0.3,0.4]) """ mySet = firstSet(len(w)) allSetsM = [ciDefDP(Q, w)(mySet)] while notLastSet(mySet): mySet = nextSet(mySet,len(w)) allSetsM.append(ciDefDP(Q, w)(mySet)) return allSetsM def ciBuildFM (fFM, n): """ Function: Builds an array fuzzy measure from a function set->measure Input: # function fFM: set -> mu(set), # n: number of elements in the reference set Ouput: an array for FM Examples: ## V, S, MP, C, L, KD, M, SD (.SE 2022) mandats = [24, 107, 18, 24, 16, 19, 68, 73] fmRiksdagsval2022 = ciBuildFM (fmWinningCoalition(mandats,175),8) ciShapley(fmRiksdagsval2022, 8) ci2Interactions(fmRiksdagsval2022,8) """ mySet = firstSet(n) allSetsM = [fFM(mySet)] while notLastSet(mySet): mySet = nextSet(mySet,n) allSetsM.append(fFM(mySet)) return allSetsM def ciBuildSymmetric (owaWeights): """ Function: Given OWA weights, it builds a summetric fuzzy measure Example: ciBuildSymmetric ([0.1,0.2,0.3,0.4]) """ n = len(owaWeights) accOwaWeights = [0]*n accOwaWeights[0] = owaWeights[0] for i in range(1,n): accOwaWeights[i] = accOwaWeights[i-1] + owaWeights[i] mySet = firstSet(n) allSetsM = [0] while notLastSet(mySet): mySet = nextSet(mySet,n) ### allSetsM.append(fFM(mySet)) allSetsM.append(accOwaWeights[sum(mySet)-1]) return allSetsM ## ---------------------------------------------------------------------------------- ## Examples of fuzzy measures: ## ---------------------------------------------------------------------------------- ## ## Grabisch measure: {M,P,L} (Example 5.12 in (Torra & Narukawa,2007)) ## -,L, P, PL, M, ML, MP, MPL fmG = [0,0.3,0.45,0.9,0.45,0.9,0.5,1] fmGMoebius = fromFM2Moebius (fmG, 3) ## Grabisch/Sugeno lambda measure: {M,P,L} ## (Example 5.27 in (Torra & Narukawa,2007)) fmL = [0,0.1842,0.2237,0.5061911,0.2237,0.5061911,0.5667687,1] ## \mu_{p,w} -- 5 elements (Example 5.66, Table 5.9 in (Torra & Narukawa,2007)) fmT = [0.0,0.04296875,0.1375,0.2375,0.06909722,0.1375, 0.3,0.5, 0.18333333,0.3,0.61666666,0.7625,0.38333333,0.61666666,0.81666666,0.9, 0.1,0.18333333,0.38333333,0.61666666,0.2375,0.38333333,0.70000000,0.81666666, 0.5,0.7,0.8625,0.93090277,0.7625,0.8625,0.95703125,1.0] ## \mu_{WM} -- 4 elements (Table 6.4 in (Torra & Narukawa,2007)) // w=(0.05,0.15,0.3,0.5) fmM = [0,0.05,0.15,0.2, 0.3, 0.35,0.45,0.5,0.5,0.55,0.65,0.7,0.8,0.85,0.95,1.0] ## \mu_{OWA} -- 4 elements (Table 6.4 in (Torra & Narukawa,2007)) fmO = [0.0,0.3333,0.3333,0.6666,0.3333,0.6666,0.6666,1.0,0.3333,0.6666,0.6666,1.0,0.6666,1.0,1.0,1.0] ## \mu_{WOWA} -- 4 elements (Table 6.4 in (Torra & Narukawa,2007)) fmW = [0.0,0.0666,0.2,0.2666,0.4,0.4666,0.6,0.6666,0.6666,0.7333,0.8666,0.9333,1.0,1.0,1.0,1.0] fmZero = [0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0] fmOne = [0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0] def fmOneDim (n): return [0.0] + [1.0]*(2**n-1) def fmWinningCoalition (seats, minimumVotes): """ ## V, S, MP, C, L, KD, M, SD (.SE 2022) mandats = [24, 107, 18, 24, 16, 19, 68, 73] fmWinningCoalition (mandats, 175)([0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0]) ciBuildFM (fmWinningCoalition(mandats,175),len(mandats)) """ return (lambda mySet: 1.0 if ((vectorProduct(mySet, seats)) >= minimumVotes) else 0.0) def fmUnanimitySet (unanimitySet): """ Build a fuzzy measure from a set: an unanimity set. fmUnanimitySet ([0,1,1,0,0]) ciBuildFM (fmUnanimitySet ([0,1,1,0,0]),5) """ return fmWinningCoalition (unanimitySet, sum(unanimitySet)) fmOneD5 = fmOneDim (5) fm4 = [0.0, 0.1, 0.2, 0.2, 0.3, 0.31, 0.32,0.4, 0.4, 0.41, 0.42,0.42, 0.7, 0.70, 0.70,1.00] ## Measures from the following paper: ## V. Torra, (Max, +)-transforms and genetic algorithms for fuzzy measure identification, Fuzzy sets and systems. ## ## Solution found for the problem dataLiEtal2013, when the model is the Choquet integral (using GA as described in the paper): ## fmFSS2022CI = [0.0,0.13274336283185842,0.17699115044247787,0.336283185840708,0.19469026548672566, 0.4247787610619469,0.415929203539823,0.48672566371681414,0.2743362831858407,0.5132743362831859, 0.49557522123893805,0.6814159292035398,0.5398230088495575,0.7522123893805309,0.6548672566371682,1.0] ## ## Solution found for the problem dataLiEtal2013, when the model is the Sugeno integral (using GA as described in the paper): ## fmFSS2022SI = [0.0,0.11688311688311688,0.06493506493506493,0.16883116883116883,0.03896103896103896, 0.5064935064935064,0.19480519480519481,0.5064935064935064,0.3116883116883117,0.6883116883116883, 0.6233766233766234,0.7142857142857143,0.4935064935064935,0.8831168831168831,0.8961038961038961,1.0] ## ## Solution found using the software in this package, when the model is the Choquet integral: ## Execution: ## dataLi_sol = ciFindMoebiusCIwithMSE(dataLiEtal2013) ## dataLi_Mob = dataLi_sol[0] # Select Mobius transform ## dataLi_FM = fromMoebius2FM (dataLi_Mob, 4) ## dataLi_FM = [0, 0.11902721152246414, 0.2192511179972149, 0.36944035435601363, 0.278254585089656, 0.4216047035265328, 0.38662134767666456, 0.4859785348532103, 0.40336076705004414, 0.5130985615950798, 0.5008868475489031, 0.6440459784023589, 0.5477764557651374, 0.6801695626428382, 0.5592789623500151, 1.0] ## Data for measure identification ("ML", "P", "M", "L", "G", "Subjective evaluation") ## (Table 8.5 in (Torra & Narukawa,2007)) data85 = [ [ 0.8 , 0.9 , 0.8 , 0.1 , 0.1, 0.7], [ 0.7 , 0.6 , 0.9 , 0.2 , 0.3, 0.6], [ 0.7 , 0.7 , 0.7 , 0.2 , 0.6, 0.6], [ 0.6 , 0.9 , 0.9 , 0.4 , 0.4, 0.8], [ 0.8 , 0.6 , 0.3 , 0.9 , 0.9, 0.8], [ 0.2 , 0.4 , 0.2 , 0.8 , 0.1, 0.3], [ 0.1 , 0.2 , 0.4 , 0.1 , 0.2, 0.1], [ 0.3 , 0.3 , 0.3 , 0.8 , 0.3, 0.4], [ 0.5 , 0.2 , 0.1 , 0.2 , 0.1, 0.3], [ 0.8 , 0.2 , 0.2 , 0.5 , 0.1, 0.5]] ## Data for measure identification from: ## Li, C., Zeng-tai, G., Gang, D. (2013) Genetic Algorithm Optimization for Determining Fuzzy ## Measures from Fuzzy Data, Journal of Applied Mathematics, Article ID 542153. ## https://www.hindawi.com/journals/jam/2013/542153/ ## ## Also used in Torra (FSS, 2022), Table 1. dataLiEtal2013 = [ [0, 0, 0.3, 1 , 0.2], [0.3, 0.8, 0.5, 0.6 , 0.5], [0.7, 0.9, 1, 0.7 , 0.8], [0.1, 0, 0.4, 0.3 , 0.15], [0.5, 0.4, 0.5, 0.6 , 0.5], [1, 0.3, 0.8, 0.8 , 0.7], [0.3, 1, 0, 1 , 0.5], [0.9, 0.6, 0.5, 0.7 , 0.7], [0.6, 0.8, 0.2, 0.4 , 0.5], [0.4, 1, 0.5, 0 , 0.4], [0.8, 0.4, 1, 0.3 , 0.6], [1, 0.8, 0.7, 0.5 , 0.75], [0.2, 0.6, 1, 0.7 , 0.5], [0, 0.3, 0.2, 0.9 , 0.2], [0.4 , 0.2, 0.8, 0 , 0.3]] ## ----------------------------------------------------- ## andness and orness ## ----------------------------------------------------- ## python -m pip install cubature ## pip install --upgrade numba ## pip install --upgrade numpy ## pip install --upgrade cubature import cubature from cubature import cubature from scipy import integrate def ciOrness (agop, dim): return ciOrnessCubature (agop, dim) def ciOrnessCubature (agop, dim): """ ciOrness(ciAM,4) ciOrnessCubature(ciAM,4) ciOrness(lambda x: ciWM(x,[0.1,0.2,0.3,0.4]),4) """ vol = cubature(agop, dim, 1, [0]*dim, [1]*dim) # vMin = integrate.nquad(min, [[0,1]]*dim) # vMax = integrate.nquad(max, [[0,1]]*dim) vMin = ciVolumeMin(dim) vMax = ciVolumeMax(dim) return ((vol[0]-vMin) / (vMax-vMin)) def ciOrnessIntegrateNQUAD (agop, dim): """ ciOrness(ciAM,4) ciOrness(lambda x: ciWM(x,[0.1,0.2,0.3,0.4]),4) """ vol = integrate.nquad(ciWrap4F(agop), [[0,1]]*dim) # vMin = integrate.nquad(min, [[0,1]]*dim) # vMax = integrate.nquad(max, [[0,1]]*dim) vMin = ciVolumeMin(dim) vMax = ciVolumeMax(dim) return ((vol[0]-vMin) / (vMax-vMin)) def ciAndness (agop, dim): return 1-ciOrnessCubature (agop, dim) ## Function that permits to have a function receiving a list instead of n parameters def ciWrap4F(f): return lambda *args: f(list(args)) def ciVolume (agop, dim): return integrate.nquad(ciWrap4F(agop), [[0,1]]*dim) def ciVolumeMin (dim): return 1/(dim+1) def ciVolumeMax (dim): return dim/(dim+1)