
Artificial Intelligence: a concise introduction

Vicenç Torra

School of Informatics

University of Skövde

SE-54128 Skövde, Sweden
e-mail: vtorra@his.se

Chapter 2. Search

A large number of problems can be formulated in a similar way so that they
can be solved using the same type of algorithms. These algorithms are called
search algorithms. In this chapter we show how to formulate different types of
problems so that search algorithms can be applied. To do so, we first give an
introduction to problem solving, that mainly consists in explaining how prob-
lems are expressed, and what means to find a solution to the problem. The
concept of state space and a search within this state space is fundamental for
this purpose. Then, we discuss how to build a solution and different ways to do
so, that mainly correspond to different ways of searching in the state space.

1 Introduction to problem solving and search

1.1 State space and problem representation

1.1.1 Examples

We will use the following examples.

• Linear puzzle. This problem consists on a sequence of numbers built from
the set {1, 2, 3, 4} as e.g. [1, 2, 3, 4]. We can swap the first two numbers,
the two numbers in the middle, or the last two numbers. Then, given
a sequence we want to get another sequence. E.g., from the sequence
[4, 2, 3, 1] we want to reach [1, 2, 3, 4].

• Shortest path. Given a map, this problem consists on finding the shortest
path between two towns in the map. The map includes roads between
towns and the distance between them.

• Symbolic integration of expressions. Given a numerical expression with
an integral term, the goal is to obtain the equivalent expression without

1



an integral symbol. E.g., given
∫

x2dx

we want to be able to find
1

3
x3.

Then, for example, which is the solution of
∫

(

x2ex + x3
)

dx.

To achieve this goal we have the integration rules.

• Theorem proving. Given an expression proof its validity by means of a set
of axioms. For example, is it true

a× (b+ c) = a× b+ a× c?

1.1.2 Modeling the environment of a system

• State. The environment is represented in terms of states. All possible
environments need to be represented by a state.

In the example of the linear puzzle, an state is any of the possible sequences
that can be built from the 4 numbers. There are 4! = 24 possible sequences.
Therefore, there are 24 possible states.

In the example of the shortest path, an state corresponds to a town. Then,
we have as many states as towns in the map.

In the example of symbolic integration, an state is a mathematical expres-
sion with or without an integral symbol. To solve the problem in practice we
may constraint which are the possible expressions to integrate. E.g., only poly-

nomials? expressions including forms like eax
b

? In general, we may have a large
set of possible states, or even an infinite number of states.

In the example corresponding to theorem proving, an state is the list of
logical formulas that we know that are true at a given moment.

1.1.3 Modeling the actions of a system

• Actions. They are modeled as transitions between states. So, formally,
they are A: State → State.

• State space graph. the set of all states and the actions that act on these
states define a graph.

Related concepts.

• Branching factor. The number of actions that can be applied to the states
of a problem. In the linear puzzle the branching factor is three (for all
states).

2



[1,3,4,2][3,1,2,4]

[3,1,4,2]

[3,4,1,2]

[1,2,3,4]

[2,1,3,4] [1,2,4,3]

[2,3,1,4] [2,1,4,3] [1,4,2,3]

[2,3,4,1][3,2,1,4] [2,4,1,3]

[2,4,3,1]

[4,1,2,3]

[4,2,1,3]

[1,4,3,2]

[4,1,3,2][3,2,4,1]

[3,4,2,1] [4,2,3,1] [4,3,1,2]

[4,3,2,1]

[1,3,2,4]

R

L

C

R L

L
C

C

R

C

L R

C R L C

L R C L R

R L C R L C R L

C L R C

L C R

Figure 1: States space graph: linear puzzle.

1.1.4 Defining the problem

• Initial state. This corresponds to define how is the environment before
applying any action.

• Objective function. We need to know which is the goal of the system. In
some cases, there is a single state that is our goal. This is the case of the
linear puzzle if we want to obtain the sequence [1, 2, 3, 4], and the problem
of the shortest path where the goal is to reach a town. In other cases,
there are several states that may be suitable. The example of the theorem
prover corresponds to this case. If we want to prove a formula, any state
where the formula appears as true is a goal state. Or maybe we do not
know which state is our goal but we may be able to recognize when a state
satisfies our requirements. The example of the symbolic integration fits to
this latter example. The goal is to find an expression that has no integral
symbol, but we do not know which expression are we going to obtain (if
we knew, the system is not needed!!). To model the goal we use a Boolean
objective function which given a state returns true if the state satisfies our

3



requirements, and false otherwise.

1.2 Some classes of problems

• Constraint satisfaction problems. A set of variables and possible values
for each value. The goal is to have a value assigned to each variable.
There are some constraints on the assignments. An state is to have a set
of variables already assigned and others not.

• Planning. The goal is to find a sequence of actions (a plan) to achieve a
goal.

2 Building a solution

Implementation. We use a tree structure, to avoid repetitions and sharing paths.

• Root. Initial state

• Nodes. States

• Edges. Actions

• Leaves. Terminal states from paths

Additional concepts.

• Fringe. The nodes in the tree not yet expanded. Also known as open
nodes.

• Closed nodes. The nodes in the tree that we have already expanded.

Search algorithm.

function search (problem) return solution

1. fringe := insert (make-node (initial-state (problem)))

2. ∃solution := false

3. while not ∃solution and not(empty(fringe)) loop

(a) node := select node and delete (fringe)

(b) if solution (node) then ∃solution:= true

(c) else newNodes := expand (node, problem)

(d) fringe := insert (fringe, newnodes, strategy)

(e) end if

4. end loop

5. if ∃solution then return(node)

6. else return (no-solution)

7. end if

end function

4


	Introduction to problem solving and search
	State space and problem representation
	Examples
	Modeling the environment of a system
	Modeling the actions of a system
	Defining the problem

	Some classes of problems

	Building a solution

