
Artificial Intelligence: a concise introduction

Vicenç Torra

School of Informatics
University of Skövde

SE-54128 Skövde, Sweden
e-mail: vtorra@his.se

Chapter 4. Machine Learning

The area of machine learning studies methods whose goal is to improve the
performance of a system. This is achieved by means of incorporating knowledge
into the system or by means of refining and improve previous knowledge. Because
of that, machine learning methods are strongly related to the different types of
knowledge representation formalisms. For example, there are methods to learn
rules, fuzzy rules, first order logic predicates, Bayesian networks.

In addition to the relationship between machine learning and knowledge rep-
resentation, there is also relationship between machine learning and search. Ma-
chine learning procedures can be seen as search processes. For example, we look
for a good set of rules. Then, it is sometimes appropriate to use search algorithms
to help in this process. Genetic algorithms are one of the search methods used
in machine learning. The next example is about the use of genetic algorithms to
learn parameters for fuzzy rules.

Example 1. Let us consider a fuzzy rule based system to represent the relation-
ship between a set of variables. We want to express a given dependent variable
in terms of a set of independent ones. Let us consider that we have a set of data
for which we know this relationship.

Note that regression methods in statistics focus in the same problem using a
(linear) regression model for representing the relationship.

In order to build the system we need to define the rules, and the memberships
of the terms involved in the rules.

Then, given the set of rules, and the set of examples to be approximated
by the fuzzy rule based system, we can consider the problem of learning the
memberships that approximate best the set of examples. Genetic algorithms can
be used for this purpose.

At the same time, machine learning is used for improving the performance of
search algorithms. Learning can consist on acquiring new knowledge (strategic
learning to guide search), learning new operators (macro-operators that are op-
erators defined in terms of simpler and already existing operators), and learning
heuristics1 (learn parameters of a parametric heuristic).

1 The LEX system[10] was used to learn heuristics for symbolic integration

1 Introduction

The most usual way to classify machine learning methods is according to how
we supervise the result (i.e., the degree of supervision). That is, what type of
information is available on the outcome expected by the system in a given cir-
cumstance. It is usual to consider supervised, unsupervised and reinforcement
learning.

Supervised learning. In this case the expected outcome of the system is avail-
able for a set of examples, also known as instances (of the problem). The goal
is to build a system that approximates as well as possible the outcome for
the examples given, and that when the system faces new cases the outcome
delivered is also good. Example 1 corresponds to this type of learning. In this
type of problem we have data and we consider that there are some variables
that depend on other ones. I.e., there is an output (the expected outcome)
of the system that should depend functionally on another set of variables.
That is, we have data with both dependent and indepedent variables, and
the goal of the learning process is that the system approximates the depen-
dent variable. In other words, we want to find a model for the functional
dependency.
A supervised learning process can often be formulated as an optimization
process, finding a good approximation of a function from a set of pairs (input,
output).
The term learning from examples is also used in this setting. The set of
examples used to build the model is know as the training set.
In order to formalize this type of learning, we consider a training set C with
N examples. Each example is the pair (x, y) where x is a vector of dimension
M and y is the outcome of applying a function f (which is not known) to
vector x. Therefore, we have N examples in a given M dimensional space.
That is, X = {x1, . . . , xi, . . . , xN}. We usually say that the examples Xi are
described in terms ofM variables or attributes A1, . . . , AM . With DOM(Ak)
we denote the domain or range of variable Ak. Then, we use Aj(xi) to express
the value of variable Aj of example xi.

Missing values. It is usual in real data that some variables are not specified
for some examples. These cases are known as missing values. Using the no-
tation above Aj0(xi0) is not defined for example io and variable j0. Missing
values can be due to data of low quality (i.e., difficulties in data collection,
errors, and unknown values in questionnaires), but they can also be made on
purpose. For example, some methods for data privacy reduce disclosur risk
by means of data suppression. Not only the suppression of sensitive data but
also the suppression of other data that can help intruders to guess sensitive
data (this is known as secondary suppression)

In case that there are measurement errors, we have that y is f(x) plus a
given error ǫ. That is, y = f(x) + ǫ. From this information we build a model

that we denote by MC (we use the subindex C because the model depends
on the examples C).
The goal is that the model MC applied to an element x leads to something
similar to f(x). In other words, that MC(x) is an approximation of f(x) and
MC(x) ∼ f(x). When there is no problem of confusion, we use simply M to
express the model.
Within supervised machine learning it is convenient to distinguish between
different types of problems, because it is usual to apply different algorithms
to each type. We describe them below.

– Regression problems. Each example includes a variable with the so-
lution (i.e., variable y above), and this variable is numerical. The goal
of the learning process is to build a model of the attribute. Statistic re-
gression methods, as linear regression methods, and neural networks are
examples of methods for solving this type of problems.

– Classification problems. This is a problem similar to regression but
the variable to be learnt is categorical or binary. Most methods to learn
rules are of this family.

Other types of problems: similarity learning (and metric learning), sequence
learning, preference learning.

Reinforcement learning. In this case we have only partial knowledge on the
performance of the system. We do not have the output of the system but
only a reward or a penalty that give a rough idea of the performance. For
example, if we consider planning robot trajectories, the number of colisions
and the time used to achieve the goal give an idea of the performance.
Sutton and Barto [16] define reinforcement learning as follows:

Reinforcement learning is learning what to do – how to map situa-
tions to actions – so as to maximize a numerical reward signal. The
learner is not told which actions to take, as in most forms of machine
learning, but instead must discover which actions yield the most re-
ward by trying them. In the most interesting and challenging cases,
actions may affect not only the immediate reward but also the next
situation and, through that, all subsequent rewards. These two char-
acteristics – trial-and-error search and delayed reward – are the most
important distinguishing features of reinforcement learning. (Sutton
and Barto, 2012 [16], p 4).

Unsupervised learning. The only information available is on the inputs of
the system, but no specific action or output is expected. The algorithm tries
to extract useful knowledge from the information available. This corresponds
to finding similarities and regularities (i.e., interesting patterns) in the data.
Because of that, we have data described in terms of variables, but there is
no distinguished variable (i.e., an output variable) as we have in supervised
learning.
Clustering agorithms, which build clusters and taxonomy from data, are
examples of unsupervised machine learning. Association rule mining algo-
rithms are also unsupervised machine learning tools. Methods to find latent

variables as principal components, SVD and the EM algorithm can also be
seen from this perspective.

Another way to classify machine learning algorithms is to distinguish between
deductive and inductive learning. We have inductive learning when knowledge is
extracted from examples, and we have deductive learning when we only reelabo-
rate knowledge already existing. The knowledge implicit in previous knowledge
is also known with the term chunking.

1.1 Knowledge representation and learning

The algorithms discussed in some detail in the next sections do not take into ac-
count domain knowledge. They are based only in examples from which knowledge
is acquired. Because of that, they can be seen as knowledge modeling algorithms.

There are machine learning methods that use (or even need) previous knowl-
edge in order to build more complex knowledge structures. Inductive logic pro-
gramming is an area that studies and develops these type of methods. We have
to mention here also the algorithms for improving the performance of search
algorithms, as they also need knowledge. Cognitive architectures, that inte-
grate knowledge representation, problem solving algorithms and machine learn-
ing methods, also relate knowledge representation and learning. Examples of
these architectures are Soar and Prodigy.

Inductive logic programming systems build models from examples. The dif-
ference is that they use knowledge to overcome some of the limitation of other
inductive algorithms. In particular, they try to overcome the following three
limitations.

– Limited representation. Inductive methods only build models with ex-
pressions that correspond to propositional calculus. Therefore, they can not
build models representing propositions on first-order calculus.

– Do not consider previous domain knowledge. Inductive methods learn
descriptions from examples, and all they learn has to be in the examples.
Other approaches as macro-operators focus on existing knowledge, reformu-
lating it, but then no new knowledge can be learnt.

– Vocabulary bias. Methods can only use those terms that appear in the
examples. It is not possible to invent new terms.

Inductive logic programming tries to solve these limitations with methods
based on first-order logics. This is used to represent what is already known
(previous knowledge) and to represent what is learnt. Examples of inductive
programming systems include: MIS, SOIL, CLAUDIEN, and GOLEM.

Given a previous knowledge K, a set of positive examples E+, and a set
of positive examples E− (examples that can not be proven from K), inductive
logic programming systems builds a set of clauses in first-order logic H such that
they prove E+ but they do not prove E−.

We illustrate below an example that consists on finding Prolog predicates to
define the quicksort algorithm.

Example 2. [11] Definition of quicksort algorithm using inductive logic program-
ming. To do so we need the previous knowledge K and the set of examples E+
and E−.

Background knowledge:

partition(X,[],[],[]).

partition(X,[Head|Tail], [Head|Sublist1], Sublist2) :-

lte(Head, X),partition(X, Tail, Sublist1, Sublist2).

partition(X, [Head|Tail], Sublist1, [Head|Sublist2]):-

gt(Head, X),partition(X, Tail, Sublist1, Sublist2).

append([],List,List).

append([Head|Tail], List,[Head|Rest]):-append(Tail, List, Rest).

lte(0,0). lte(0,1). ...

gt(1,0). gt(2,0). gt(2,1). ...

In these definitions we have the predicates append and partition. The first is
satisfied when the third list corresponds to the concatenation of the first two lists.
The predicate partition has four parameters. First a numerical value X, and
then three lists. The predicate is true when the second and the third list define a
partition of the first list so that in the second list we have the elements less than
or equal to X, and the third one contains the elements larger than X. Therefore,
partition(4, [1,6,2,5,3,4], [1,2,3,4], [6,5]) evaluates in true.

We have also among the definitions predicates for lte and gt. The former is
satisfied when the first numerical value is smaller than or equal to the second.
The latter is satisfied when the first numerical value is larger than the second.

In addition, we need some positive and negative examples.
Positive examples:

qsort([],[]). qsort([0],[0]). qsort([1,0],[0,1]). ...

Negative examples:

qsort([1,0],[1,0]). ...

With this information, the inductive logic programming system GOLUM
generated the following model for qsort:

qsort([A|B],[C|D]):-

partition(A, B, E, F), qsort(F, G),

qsort(E, H), append(H, [A|G], [C|D]).

and also the following model for qsort:

qsort([A|B], [C|D]):-

qsort(B,E), partition(A,E,F,G), append(F, [A|G],[C|D]).

The first solution is the usual implementation. That is, for a list with head
A and tail B, we divide elements of B in two sets: elements less than or equal to
A, and all the others. Then, we order the two sets and append them including A

between them.

The second solution is also an implementation of a predicate to order lists.
Nevertheless, it is an inefficient solution. For a list with head A and tail B, we
first order B. Then, we partition B using A. Therefore, we have F and G which are
ordered, the former with the elements less than and equal to A and the latter
with the elements larger than A. Thus, their concatenation (including A in the
right position) is an ordered list.

1.2 Preprocessing and basics

We will use the following notation. We have a data set X = {x1, . . . , xN} of N
objects. Each object is represented in terms of M attributes A = {A1, . . . , AM}.
We use At(xl) to denote the value of attribute At of object xl. A(xl) corresponds
to the vector (A1(xt), . . . , A1(xt)). The domain or range of attribute A is denoted
by DOM(A). When the attribute At is categorical, we denote its terms by
DOM(A) = {at1, at2, . . . , atRt

}.

It is usual to consider the following types of variables.

– Numerical variables.

– Binary or Boolean variables.

– Ordinal variables. Set of ordered terms. We can compare them with > and
≥.

– Nominal variables. Set of terms. The only allowed operation is to check for
equality.

If needed, we can transform ordinal and nominal variables into binary vari-
ables.

Distances and similarities Machine learning algrithms need functions that
evaluate how similar are two objects, or at which distance they are.

Similarity coefficients permits us to evaluate and quantify the similarity be-
tween pairs of objects. These coefficients can be clasified in four classes: based
on distances, on associations, on correlations and probabilistic similarity.

2 Supervised machine learning

2.1 Consistency

It is important for any learning method to be consistent. A method is consis-
tent when the size of the training set increases, the model tends to converge
to the correct solution. This property comes from statistics, where we have the
definition of consistent estimator. See e.g. [8] (p.130).

1.0 2.0 3.0 4.0

0
1

2
3

4
5

(a)

x

y

1.0 2.0 3.0 4.0

0
1

2
3

4
5

(b)

x

y

1.0 2.0 3.0 4.0

0
1

2
3

4
5

(c)

x

y

Fig. 1. Three different generlizations for a set of points.

2.2 Bias and variance

When we are building a model from data (for regression or classification) we
expect that our model is able to generalize from the examples given in order
that we can apply our model to new situations.

For example, if we build a classification rule to classify patients, we expect
that the rule can be correctly applied to other patients. Not only the ones in the
set of examples. This is so because we do not expect the set of examples (the
training set) to be exhaustive, but only a sample of possible situations. So, the
method that builds the rule should be able to generalize our data so that the
scope of the rule is not too much narrow or too focused to the training set.

The generalization poses several difficulties, because from a single data set
there are several possible generalizations. They depend on our assumptions on
the model.

Figure 1 illustrates the generalization problem with an example with one
input variable and one output variable. The figure displays four points that
represent four examples (training set) and three different models. Each model
generalizes the four examples in a different way. The models are based on: (i)
a regression line, (ii) a polynomial of degree two, (iii) a polynomial of degree
three.

The construction of a model depends on the knowledge representation for-
malism. In the case above, the model is either a regression line, a polynomial of
degree two or a polynomial of degree three. Each formalism permits to repre-
sent correctly some situations, and others may not be representable. This causes
some bias. The bias is some predisposition or inclination of the system to learn
some aspects and ignores some others.

In addition to the bias caused by the knowledge representation formalism,
we have bias due to the search algorithm (the approach used to determine the
model). This is the inductive bias. For example, in case of different possible
options, select the simplest (or shortest) one. This is related to Occam’s razor.

The use of bias has advantages (e.g., model simplicity and reduced computa-
tional costs) and inconveniences (e.g., we may be unable to build the appropriate
model). Selection of an appropriate knowledge representation formalism needs
to find a good balance between them.

Formalization In regression problems, the bias is computed as the difference
between the expected estimated value of our model (if x0 is the input of our
model M , the estimated value is M(x0)) and the value of the function for this
input (if f is the function, that is f(x0)). That is,

Bias(M(x0)) = E(M(x0))− f(x0).

Note that E(M(x0)) is the expected estimated value of our model for x0

and that the expectation of a random variable X with density function p is
E(X) =

∑

x∈X x · p(x). In an experiment, we would consider models built from
training sets and we approximate this expectation by the mean of the outcome
of the corresponding models. For example, if we have five training sets C =
{C1, C2, C3, C4, C5}, then E(M(x0)) is the mean of the outcome of the models
built from C1, . . . , C5. If we denote them by MC1

,MC2
,MC3

,MC4
,MC5

, then,

E(M(x0)) = (MC1
(x0) +MC2

(x0) +MC3
(x0) +MC4

(x0) +MC5
(x0))/5.

Naturally, we have that a method has no bias when the expected estimated
value correponds perfectly to the function f at x0. On the contrary, we have
bias when these values differ. It is important to note that not having bias does
not imply that the models approximate correctly f(x0). We may have E(M(x0))
but MCi

6= f(x0) for all MCi
.

Another aspect to be taken into account is the variance, that corresponds
to the dispersion of values around the expectation. If our model is such that
E(M(x0)) is near to f(x0) but the variance is large, it means that in most of
the cases (or in all cases) we will get a value M(x0) that is far from f(x0).
Among the learning algorithms with the same bias, we will prefer those with
lower variance.

The variance of the learning method is defined as follows:

V ariance(M(x0)) = E([M(x0)− E(M(x0))]
2).

Recall that the variance of a sample {x1, . . . , xN} is s2 = (1/N)
∑

(xi −
E(X))2, and when E(X) = 0 is of course s2 = (1/N)

∑

x2
i .

Bias and variance and error of a model In this section we consider that
we model the outcome of a system, that corresponds to the function f discussed

in the previous section. Nevertheless, there is some error in the outcome, and
because of that the real outcome is f(x) + ǫ. We assume that ǫ has zero mean.
Then, the error between the system and a model constructed from a training set
C (i.e., the model MC) is

e = MC(x)− y = MC(x)− (f(x) + ǫ).

It is possible to prove that

E(e2) = E(ǫ2) +Bias2(M(x0)) + V ariance(M(x0)).

Trade-off between bias and variance Let us consider what happens with
bias and variance when the complexity of models increase. As a simple example,
consider the approximatation of a function in R using polynomials. Here the
complexity is the degree of the polynomial. The larger the degree, the larger
the complexity. Note that for a polynomial of degree m the model (i.e., the
corresponding polynomial) has m+ 1 parameters.

It is easy to see that when the complexity of models increase, these models
approximate better the outcome (they approximate better the function and the
error ǫ). Because of that, when the complexity increases, the bias decreases.

At the same time, when the complexity increases, the variance increases.
Note that small changes in the examples, will change largely the model.

Observe that in Figure 1 (a) we have that the bias is large and the variance
is small (because changing one point does not affect largely the regression line).
In contrast in (c) we have that the bias is small (zero for the four points in
the training set) but that the variance is large, because modifying a point will
modify largely the curve.

We have stated that the error of the training set tends to decrease when the
complexity of the model increases. If we consider a different set for testing the
performance of the model (a test set), we have that the error of this set has
a different behavior. Initially, the error tends to decrease when the complexity
increases, but from a certain point the error tends to increase if the complexity
is further increased. The region in which the error starts to increase usually
correponds to a good complexity value. Complexities larger than this one usually
means that the model is too fitted to the training set. This is known as overfitting.
That is, we have that from this point, the model does not generalize correctly
but that it learns the examples including the error ǫ.

2.3 Evaluation and metrics

The simplest type of classification problem is when the class to learn is binary.
In this case it is usual to consider one of the classes as the positive one, and the
other as the negative.

When we apply the model we have built, and we compare what the model
returns and what should be returned, we find different situations. In the case of
binary classification problems with a positive and a negative class, we have four

Error

Complexity

Test set

Training set

Fig. 2. Error for the training and test sets.

situations. They are as follows. Figure 3 represents graphically these four cases.
It is usual to use the term ground truth2 to refer to what is expected, i.e., the
real class of a record.

– True positives. The model returns a positive class and it should be a
positive class. Therefore, the answer is correct. We denote the number of
true positives by TP .

– True negatives. The model returns a negative class and it should be a
negative class. Therefore, the answer is also correct in this case. We denote
the number of true negatives by TN .

– False positives. The model returns a positive class, but it should return
a negative class. The outcome is incorrect. We denote the number of false
positives by FP . This type of errors is known as type I error in statistics.

– False negatives. The model returns a negative class, but it should return
a positive class. Therefore, the outcome is also incorrect. We denote the
number of false negatives by FN . This type of errors is known as type II
error in statistics.

The goal of a supervised machine learning method is to have as few as possible
false negatives and false positives. However, it is important to note that not all
errors may have the same importance. For example, if we have a system to detect
severe illnesses, we may prefer to have false positives than false negatives.

2 In some applications, the ground truth is not know and cannot be found. For exam-
ple, when we consider the diagnosis of a patient. In this case, it is usual to consider
the gold standard. This is the best diagnosis that can be made in current circum-
stances.

For example, in a system to detect cancers, it may be better to raise an alert
and inform that it is possible that someone has cancer when it is not, than to
ignore a case of cancer. That is, we prefer to be in the safe side.

There are some measures based on these four situations.

– Accuracy. This corresponds to the percentage of cases correctly classified.
That is,

Accuracy =
TP + TN

TP + TN + FP + FN
.

– Recall (of the positive classes). This corresponds to the proportion of
cases correctly classified as positive among those that are truly positives.
Therefore, this is

Recall =
TP

TP + FN
.

This measure is also known as the true positive rate (TPR) and sensitivity.
In an information retrieval system3, we have 100% recall when all documents
matching are retrieved, and in a diagnosis system, we have 100% recall when
all positive cases of an illness are detected. Note that we can have 100%
recall when uninteresting documents are also retrieved, or when we classify
as positive cases that should not be classified as such. In particular, note
that a binary classifier that assigns the positive class to any situation, will
have a 100% recall.
We have discussed above the case of a system to detect cancers, and avoiding
false negatives. A system that tries to not miss any positive instance, will
focus on having a large recall.

– Precision (of the positive classes). This corresponds to the proportion
of cases correctly classified as positive among those that are classified as
positives. That is,

Precision =
TP

TP + FP
.

This measure is also known as positive predictive value (PPV).

These measures can be extended to multi-class problems. That is, to problems
in which the class is not binary, but that there are several possible outcomes. In
this case, we define recall and precision for each possible class. The definitions
given below are for a given class ci. The definition uses Fij to denote the number
of cases classified as belonging to class ci when the correct class is cj . I.e., the
model states ci and the ground truth is cj .

Recalli =
Fii

∑

k Fki

3 Information retrieval is about selecting documents that match a given query. Here,
matching does not necessarily mean that we find in the document the list of terms of
a query, but e.g. semantic matching, or queries in natural language may be possible.

TRUE
POSITIVE

NEGATIVE

FALSE
POSITIVE

NEGATIVE

Model: Positive

Model: Negative

FALSE TRUE

Expected: NegativeExpected: Positive

Ground truth

Fig. 3. Possible situations for binary classes (model vs. expected outcome).

Precisioni =
Fii

∑

k Fik

.

In general, both precision and recall are necessary in an application. Because
of that there are two indices that average precision and recall. They are the
F-measure and the G-measure. The difference between them is on the type of
mean4 they use to average the two terms.

– F-measure. It is defined as the harmonic mean of the precision and the recall.

F-measure =
2 · precision · recall

precision + recall

This measure is also known as the F1-score because there is the Fβ , a
weighted harmonic mean, and for β = 1 we have the F-measure.

– G-measure. It is defined as the geometric mean of the precision and the
recall.

F-measure =
√

precision · recall

Additional related concepts: ROC curve (ROC for reeceiver operating char-
acteristic) and AUC (area under the curve).

4 A simpler way to average precision and recall would be to use the arithmetic mean.
That is, use

(precision+ recall)/2.

If people use geometric and harmonic mean instead is because these other means
compensate less when one of the terms lead to bad results. Discussion on different
ways to aggregate can be found in [17].

Validation When there is no set to validate a model (all the data are for the
training set), we can use cross-validation. It uses some of the examples in the
training set for learning and others for testing.

– k-Fold cross-validation. The set is divided into k parts with the same size.
Then, we use one of these parts for testing and the others for training. We
repeat the same with the other parts. In this way we can apply the procedure
k times with each of the k parts. We can compute mean values of statistics
for the k different executions, and in this way e.g. compare machine learning
algorithms, or parameterizations.

– Leave-one-out cross-validation. This uses one record for testing and the other
for learning the model. We repeat the same process considering each of the
records in the training set. This is equivalent to k-fold cross-validation with
k equal the cardinality of the set.

2.4 Decision trees

Decision trees permit us to classify objects by means of a sequence of tests. The
tree is defined with questions in the nodes and classes (or probability distribu-
tions on classes) in the leaves. Figure 4 represents a decision tree built from the
iris dataset [?] to classify three species of the iris flowers (iris setosa, iris ver-
sicolor, and iris virginica). This tree built using the function ctree of package
partykit [7] in R has a probability distribution over the set of classes in each
leaf.

In order to use the tree for the classification of a given record, we proceed
from the root of the tree (the top) and go downwards following the path indicated
by those questions that evaluate into true. The leaf indicates the class in which
we classify our record. For example, if our record indicates that petal length is
2.3 and that petal width is 1.9, we will follow the path that leads to node 7.

Algorithm class (record, tree) is

if (leaf(tree)) return class(tree)

else {

subtree = select-sub-tree (node,record)

class(record, subtree) }

end algorithm

Formally, decision trees are equivalent to logical rules where a set of pred-
icates are used to infer a class. For example, the tree in Figure 4 includes the
following rule.

If petal.length(x)> 1.9 and petal.width(x)>1.7 then iris.setosa
Decision trees are an effective method in learning. We can use them to ap-

proximate any function. The goal of machine learning algorithms for decision
trees is to build trees with minimal height. That is, that the number of eval-
uations needed to classify a record is a small as possible. We outline below a
greedy method to build the tree. The definition is recursive. At each point we

Petal.Length

p < 0.001

1

≤ 1.9 > 1.9

Node 2 (n = 50)

setosa

0

0.2

0.4

0.6

0.8

1

Petal.Width

p < 0.001

3

≤ 1.7 > 1.7

Petal.Length

p < 0.001

4

≤ 4.8 > 4.8

Node 5 (n = 46)

setosa

0

0.2

0.4

0.6

0.8

1

Node 6 (n = 8)

setosa

0

0.2

0.4

0.6

0.8

1

Node 7 (n = 46)

setosa

0

0.2

0.4

0.6

0.8

1

Fig. 4. Decision tree.

select which is the best partition (and best question to be asked). Then, the
records in the training set are partitioned in disjoint sets (one set per branch)
and the same procedure is applied recursively. The process is stopped when all
records in the training set are in the same class or if there are no records left.
This greedy approach is the most used one, differences between methods are on
how the partition is done at each point, and on whether we need to process all
records in the training set. With respect to partition generation some measures
as the information gain and Gini gain are used for this purpose. With respect to
processing all records, some algorithms (as the ctree mentioned above) do not
expand the whole tree until all records in the training set have the same class.
The expansion is stopped when there are still records of different classes in the

training set. This is done, among other reasons, to avoid overfitting. Decision
trees are consistent.

The term splitting is used for the process of building a partition.

Algorithm buildDecisionTree (trainingSet, majority) is

if (empty(trainingSet)) { leaf(class = majority) }

else {

if (class(r1)==class(r2) for all r1!=r2 in trainingSet) {

leaf(class = class(r1)) }

else {

P = set of testable partitions (trainingSet)

Pbest = evaluate and select (P)

for each subsetOfP in P {

allSubtrees[subsetOfP] = buildDecisionTree(subsetOfP,

majority(trainingSet)) }

tree(question according to Pbest, allSubtrees)

}

}

end algorithm

We describe now how to select a partition and the corresponding question
based on the information gain. This approach is based on the entropy. The
process assumes that all variables are categorical (nominal, i.e., without ordering
on the set of terms), and, thus, each variable is described in terms of a set of
terms. Let α1, α2, . . . , αr the set of terms for variable V . We also assume that
the examples of the training set have only two classes (positives and negatives).

At any point, given a node of the tree with a set of records in the associated
training set, we have that we can infer a probability distribution on the output
classes.

For example, let us consider a node N for a decision tree for only classifying
positive and negative records. If np and nn denote the number of positive and
negative records, we have that we can define a probability distribution on the
node N by pN = (np/(np + nn), nn/(np + nn)). It is clear that we can also
compute the entropy for this node N . It will be

H(N) = H(pN) = −np/(np+nn) log2 np/(np+nn)−nn/(np+nn) log2 nn/(np+nn).

Now, for the node N we consider possible partitions (a new question to be
added into the tree). We consider variable V with its terms α1, α2, . . . , αr. When
we consider the question generated by this variable, we will have that the node
has r sons, one for each term. We call these sons Nαi

. When we divide the
training set according to the terms, we will have that for αi and the son Nαi

, we
have npi elements which are positive and nni which are negative for a total of
npi+nni that have V = αi. Using this information, we can calculate the entropy
for each node Nαi

. In a way similar to our previous computation for H(pN) we
define

H(Nαi
) = H(npi/(npi + nni), nni/(npi + nni)).

Then, we compute for the variable V the average of all nodes Nαi
as follows.

H(N |V) =
r
∑

i=1

npi + nni

p+ n
H

((

npi
npi + nni

,
nni

npi + nni

))

.

The information gain we get when we use variable V is the difference between
these two entropies. The one before selecting V and the one that uses the variable
V in the partition. That is,

IG(N, V) = H(N)−H(N |V).

At a given node, we would select the variable that maximizes the information
gain. That is, we would compute for all variables not already used in previous
(higher) nodes of the tree the information gain, and then select the one with
maximum value.

Figure 6 represents another decision tree, it is for the wine-black dataset [?].
[12] is a detailed survey published on 1998 on the construction of decision

trees. It discusses almost 400 references, including different approaches for vari-
able selection and splitting. [9] and [15] discuss the split selection bias. The
former describes in detail the different approaches, including the formulas for
computing the best selection. Greedy methods for selecting a split are biased
when different variables have different number of split points. [15] studies this
problem for binary classification problems.

2.5 Nearest neighbor and k-nearest neighbor

These are very simple methods that can be used for both regression and classi-
fication problems.

Given a training set C and a distance d on the space of C, the nearest
neighbor defines the model MC for a new data element x as the value of the
record in C that is a minimum distance to x. That is,

MC(x) = y(arg min
x′∈C

d(x′, x))

In this expression, given the training set C = (X,Y), I use y(x) to denote the
class of x.

The k-nearest neighbor is similar, but in this case we retrieve the k nearest
neighbors and we use them to compute MC(x). In classification problems, the
output is usually the majority of the outputs of the retrieved set. In regression
problems, we usually return the average of the retrieved set.

The nearest neighbor relates to case-based reasoning (CBR) and to metric
learning.

Missing values and supervised machine learning. Some models are
better suited than others to deal with missing values. A model based on k-

nearest neighbors can deal easily with missing values. We can define distances
that can deal with them in an appropriate way.

2.6 Neural networks

Artificial neural networks are inspired in natural neural networks. The terminol-
ogy we use in machine learning is inspired in the terminology in biology.

Formally, a neural network is represented by means of a graf where nodes
are the computation units (neurons) and the edges represent information flow
between neurons (connections between neurons). Each edge has weight, and each
neuron has a function, the activation function, that represents in what extent
the inference is propagated to the output.

In fact, there are neural networks for unsupervised learning and also for
supervised learning. The latter are used for approximating functions from ex-
amples. They are usually used for regression problems. Self-organizing maps are
seen as unsupervised neural networks.

The notation we use in this section is slightly different from what we are
using in the remaining part of the chapter. Given an example (x, y), the input
values are x = (x1, . . . , xN) with xi = Ai(x), and the output values are y =
(y1, . . . , yM). In general, both input and output are numerical values. Given the
training set (a set of pairs), the goal is to define an architecture of the network,
and the weights for the connections so that when we apply the neural network
NN to an element x of the training set (i.e., NN(x)) we get a result similar to
y.

Figure 7 represents a neural network with an input layer of dimension N ,
an output layer of dimension M , and a hidden layer. Hidden layers represent
intermediate computations. To operate, the network proceeds as follows. Each
unit takes the values associated to their inputs and combine them with the
weights of the corresponding connections, then the resulting value is propagated
into the output using the activation function of each unit (neuron).

If for a given neuron, we have four input connections represented with values
x1, x2, x3, x4 with weights, respectively, w1, w2, w3, w4, and an activation func-
tion f , the output of the neuron is:

f(w1x1 + w2x2 + w3x3 + w4x4).

In some models, neurons include a bias that permit to influence the output. We
use θ to represent this value.

Figure 8 (left) represents a neuron and (right) with a bias. In this case the
output of the neuron is:

f(w1x1 + w2x2 + w3x3 + w4x4 + θ).

Approximation of functions using neural networks An important result
when we are considering the use of neural networks as a knolwedge representation
formalism is the theorem proven by Cybensko in 1989 [2]. This theorem states
that neural networks are universal approximators.

Theorem 1. Given a real continuous function Φ in the unit cube of R (Φ :
[0, 1]N → [0, 1]) then for all ǫ there exists a neural network NN with N input
neurons, a single hidden layer with neurons with sigmoids f(x) = 1/(1+e−x) as
activation functions, and a single output with linear activation function f(x) = x
that satisfies

sup |Φ(x) −NN(x)| < ǫ.

This theorem only proves the existence but does not give clues on how the
networks can be built for particular problems. Nevertheless, it means that for a
given problem, we can consider the use of neural networks.

There are different similar results about universal approximation using neural
networks. See also [4,5]. [6] proves that neural networks can not only approximate
a function but also its derivatives.

Learning using backpropagation Backpropagation is an iterative way to
compute the weights of a neural network. The process takes an example in each
step and then updates the weights taking into account the error of the network
for this example. Because of that, we can see the algorithm in terms of two steps:
propagation and adaptation.

– Propagation (function computation). We take an example of the train-
ing set, and compute the output for this example. Once the output value
is obtained, we compute the error of this value with respect to the output
expected for this example.

– Adaptation (learning step). We modify the weights using the error com-
puted. We say that the modification of weights is done backwards, the error
of the output is propagated backwards towards the input.

This process is done for each of the examples of the training set, and, in fact,
examples are used as many times as needed so that the error is reduced. An
iteration with all the examples is known as epoch.

When we achieve an appropriate error, we have that the internal representa-
tion permits to obtain suitable outputs for the inputs learnt. That is, we have a
function that generalizes the examples given in the training set. Therefore, the
network can then be applied to data that is not necessarily the one we have been
using in the training of the network.

Let us consider the backpropagation of a neural network of three neuron
layers, where only connections are permitted between contiguous layers. We do
not permit here connections that go backward (this permits that previous com-
putations/state are used later), so, no there are no cycles in the network. This
type of network is known as feedforward neural network. In addition, we do not
permit connections that skip layers.

We use the architecture of Figure 7. That is, an input layer with N neurons,
a hidden layer with L neurons, and an output output with a single output. The
hidden layer receives the data from the input layer, and the output from the
hidden layer.

In order to express the computations, we need some additional notation.
First, we need to express the weights of each connection. We use wh

ji to denote
the weights of the connections between the ith neuron of the input with the jth
neuron of the hidden layer (so 1 ≤ j ≤ L, 1 ≤ i ≤ N), and we use wo

kj to denote
the weights of the connections between the jth neuron of the hidden layer and
the kth neuron of the output layer (so 1 ≤ j ≤ L, 1 ≤ k ≤ M). Second, we need
to denote the activation functions. We use fh

j and fo
k to denote, respectively,

the activation function of the jth neuron of the hidden layer, the kth and of the
output layer. Similarly, we use θhj and θok to denote the bias of the jth neuron of
the hidden and the kth of the output layers.

Using this notation, it is clear that the output of the jth neuron of the hidden
layer is computed first accumulating the inputs of the neuron (weighting each
input by its weight) as follows

acchj =

N
∑

i=1

wh
jixi + θhj ,

and then applying the activation function to this accumulated value

sj = fh
j (acc

h
j) = fh

j

(

N
∑

i=1

wh
jixi + θhj

)

. (1)

The propagation to the output is computed in a similar way, using the sj
values obtained for the hidden layer. That is, we first accummulate the inputs
of the output layer using the weights and the bias as follows

accok =

L
∑

j=1

wo
kjsj + θok,

and then applying the activation function to this value

ok = fo
k

L
∑

j=1

wo
kjsj + θok

 . (2)

If the expected output is known for example x, we can compute the error
of the network for this example. Recall that we have expressed the output as
y = (y1, . . . , yM). Using the sum of squares of the errors (also known as the
residual sum of squares) of each output neuron, we have that the overall error
for this example is:

E =
1

2

M
∑

k=1

(yk − ok)
2.

We use 1/2 in the expression for the error because this will lead later into a
simpler expression for the weight updatings. Note that the multiplication of the
error by the constant 1/2 does not change its meaning.

With the computation of the output ok for each output neuron, and the
computation of the error, we have completed the propagation step. Now, we will
describe the adaptation. The backpropagation algorithm follows the gradient
descent.

Recall that for minimization functions, the gradient descent moves in the
direction of the negative of the gradient. That is, given a point xi, the next step
will be

xi+1 = xi − η∇NN(x).

Let us compute the gradient of the neural network. We start with the gradient
of the weights that connect the hidden layer with the output. That is, the weights
wo

kj . To do so, we derivate the error E with respect to wo
kj taking into account

Equation 2 for ok. As the weight wo
kj appears in ok but only there (i.e., not

in or for r 6= k), the derivative of E with respect to wo
kj is the derivative of

(1/2)(yk − ok)
2. Therefore,

∂E

∂wo
kj

=
∂ 1

2

∑M
κ=1(yκ − oκ)

2

∂wo
kj

(3)

=
∂ 1

2
(yk − ok)

2

∂wo
kj

(4)

= −(yk − ok)(f
o
k)

′

L
∑

j=1

wo
kjsj + θok

 · sj (5)

Therefore, we define our increment of wo
kj according to the gradient as

∆wo
kj = η(yk − ok)(f

o
k)

′

L
∑

j=1

wo
kjsj + θok

 · sj .

Now, let us turn into the weights between the input layer and the hidden
layer. That is, the weights wh

ji. The first step is to consider an expression for the
error where it is clear the dependency with the weights under consideration. To
do so, we first replace ok by the corresponding expression. In this way we obtain,

E =
1

2

M
∑

k=1

(yk − ok)
2 (6)

=
1

2

M
∑

k=1

yk − fo
k

L
∑

j=1

wo
kjsj + θok

2

(7)

(8)

As sj is the output of the hidden layer, the dependency on the weights wh
ji

will be through sj . Therefore, we have that the derivative of the error with
respect to wh

ji is in terms of the derivative of sj with respect to these weights.
Using the expression above for E, we obtain the following expression:

∂E

∂wh
ji

= −

M
∑

k=1

(yk − ok)(f
o
k)

′

L
∑

j=1

wo
kjsj + θok

wo
kj

∂sj

∂wh
ji

. (9)

Now, let us recall Equation 1 that

sj = fh
j (acc

h
j) = fh

j

(

N
∑

i=1

wh
jixi + θhj

)

and, therefore,

∂sj

∂wh
ji

= (fh
j)

′

(

N
∑

i=1

wh
jixi + θhj

)

xi.

Therefore,

∂E

∂wh
ji

= −

M
∑

k=1

(yk − ok)(f
o
k)

′

L
∑

j=1

wo
kjsj + θok

wo
kj(f

h
j)

′

(

N
∑

i=1

wh
jixi + θhj

)

xi.(10)

Using, acchj and accok as defined above

acchj =

N
∑

i=1

wh
jixi + θhj

accok =
L
∑

j=1

wo
kjsj + θok,

and taking into account that neither (fh
j)

′(acchj) nor xi depend on k so they can
be put outside the summatory, we have that we can rewrite the above expression
as:

∂E

∂wh
ji

= −(fh
j)

′
(

acchj
)

xi

M
∑

k=1

(yk − ok)(f
o
k)

′ (accok)w
o
kj . (11)

Therefore,

∆wh
ji = η(fh

j)
′
(

acchj
)

xi

M
∑

k=1

(yk − ok)(f
o
k)

′ (accok)w
o
kj .

Using the expressions∆wo
kj and ∆wh

ji we have that the adaptation (learning)
step for a given example (x, y) corresponds to the following:

– For all i, j compute

wh
ji(t+ 1) = wh

ji(t) + η(fh
j)

′
(

acchj
)

xi

M
∑

k=1

(yk − ok)(f
o
k)

′ (accok)w
o
kj

– For all k, j compute

wo
kj(t+ 1) = wo

kj(t) + η(yk − ok)(f
o
k)

′

L
∑

j=1

wo
kjsj + θok

 · sj

In these expressions, η is the learning rate. It is usually a small value, near
e.g. 0.15.

Deep learning Larger networks, with additional hidden layers (e.g., from 5 to
10). Related topics: deep neural networks and deep belief networks.

2.7 Support vector machines

Linear support vector machines (SVM) classify data in two classes by means
of a hyperplane in the space of the data. The learning algorithm is to find an
appropriate location for this hyperplane.

Non-linear support vector machines transform the original data translating
them in a high-dimensional space, and then locates a hyperplane in this high-
dimensional space. This results into a better classification because the hyper-
plane in this high-dimensional space corresponds to a non-linear hypersurface in
the original space.

3 Unsupervised machine learning

3.1 Clustering

Clustering algorithms build structure for a set of data. They tend to put in the
same cluster those objects that are similar and leave in different clusters those
objects that are different. There are different ways to represent the structure of
the data. The most usual case is one of the following ones.

– Disjoint categories. An object can belong only to a single category. This is
the structure built by those algorithms that build a partition of the domain.
All objects present in the training set are usually assigned to one of the
clusters. Nevertheless, this is not always so for the objects not present in the
training set. This is the case when logical descriptions are built for describing
the clusters. An example of algorithm that leads to this type of structure is
k-means.

– Categories with overlapping. Objects can belong to different member-
ships. This is the case of having fuzzy clusters. Fuzzy c-means is an algorithm
that lead to fuzzy clusters. Fuzzy cluster is related to fuzzy sets, as the over-
lapping is represented by means of membership functions. A discussion on
the origins of fuzzy clustering by Ruspini and Bezdek can be found in [14].

– Categories with a hierarchical structure. The relationship between cat-
egories is expressed in terms of a tree. We call dendrogram the tree-like graph
to represent the hierarchical structure of clusters. Given a category we may
have sub-categories and super-categories. All objects belonging to one cate-
gory will also belong to all super-categories (categories found in the path to
the root of the tree). Figure 9 is a dendrogram for the Iris dataset constructed
using a hierarchical clustering algorithm.

Cluster description There are different ways to represent the clusters obtained
by a clustering algorithm. Some of them are the following.

– Intensional representation. In this case, we have that categories are repre-
sented in terms of their properties. For example, using centroids or logical
expressions.
• Centroids.
• Logical expressions

– Extensional representation. Categories are expressed by means of a exhaus-
tive list of the objects that define them. The term lazy learning is used for
those methods that use an extensional representation. This is the case, for
example, of k-nearest neighbors, and of case-based reasoning.

Types of algorithms

– Partitive methods
– Agglomerative methods

– Combinatorial algorithms. Directly working on data. No assumption of any
underlying probability distribution.

– Mixture modeling algorithms. Assumption on an underlying probability den-
sity function. Look for the parameters of the model. E.g., two Gaussian
distributions are fitted to a set of points.

– Mode seeker algorithms. Assumption on an underlying probability density
function. Nonparametric perspective.

Partitions and fuzzy partitions Some partitive clustering algorithms return
the partition that minimize an objective function (OF). E.g.,

Π = argmin
s∈S

OF (s).

This is the case of k-means and fuzzy c-means. The first for finding crisp
partitions and the second for finding fuzzy partitions.

Algorithm 1 Clustering algorithm: c-means.

Step 1: Define an initial partition and compute its centroid P .
Step 2: Solve minχ∈McOF (χ, P) as follows:

– For all x ∈ X, define k0 = argmini ||A(x)− pi||
2

– χk0
(x) = 1

– χj(x) = 0 for all j ∈ {1, . . . , c} s.t. j 6= k0
Step 3: Solve minPOF (χ, P) as follows:

– for all k ∈ {1, . . . , c}, define pk =
∑

x∈X χk(x)A(x)
∑

x∈X χk(xi)

Step 4: Repeat steps 2 and 3 till convergence

k-means This is a partitive clustering algorithm that finds a given number of
partitions. The algorithm looks for a partition that minimizes an expression, and
each partition has a cluster center (its centroid). The expression computes the
distance between the records and the cluster centers. So, the goal is to find a
partition and centroids so that they are at a minimial distance of all points.

Minimize
OF (χ, P) =

∑c
k=1

∑

x∈X χk(x)||A(x) − pk||
2

subject to
χ ∈ Mc = {χk(x)|χk(x) ∈ {0, 1},

∑c

k=1 χk(x) = 1 for all x ∈ X}
(12)

This cannot be solved optimally in an analytical form. Instead it is solved
using the following algorithm.

Step 1: Define an initial partition and compute its centroid P .

Step 2: Solve minχ∈Mc
OF (χ, P)

Step 3: Solve minPOF (χ, P)

Step 4: Repeat steps 2 and 3 till convergence

For step 2 we use:

– k0 = argmini ||A(x) − pi||
2

– χk0
(x) = 1

– χj(x) = 0 for all j 6= k0

For step 3 we use:

pk =

∑

x∈X χk(x)A(x)
∑

x∈X χk(xi)
(13)

Algorithm 1 summarizes all the steps.

Algorithm 2 Fuzzy c-means

Step 1: Generate initial P
Step 2: Solve minµ∈MOFFCM (µ, P) by computing for all i ∈ {1, . . . , c} and x ∈ X:

µi(x) =
(

c
∑

j=1

(||x − pi||
2

||x − pj ||2

) 1

m−1

)

−1

Step 3: Solve minPOFFCM (µ, P) by computing for all i ∈ {1, . . . , c}:

pi =

∑

x∈X(µi(x))
mx

∑

x∈X(µi(x))m

Step 4: If the solution does not converge, go to Step 2; otherwise, stop.

Fuzzy c-means Fuzzy c-means is similar to k-means, but in this case partitions
are fuzzy.

Definition 1. [13] Let X be a reference set. Then, a set of membership func-
tions M = {µ1, . . . , µc} is a fuzzy partition of X if for all x ∈ X we have

c
∑

i=1

µi(x) = 1

The definition of the problem is:

Minimize
OFFCM (µ, P) = {

∑c

i=1

∑

x∈X(µi(x))
m||x− pi||

2}
subject to

µi(x) ∈ [0, 1] for all i ∈ {1, . . . , c} and x ∈ X
∑c

i=1 µi(x) = 1 for all x ∈ X.

(14)

This is solved with Algorithm 2, with the expressions below for cluster centers
pi and membership functions µi.

pi =

∑

x∈X µi(x)x
∑

x∈X µi(x)
(15)

µi(x) =
e−λ||x−pi||

2

∑c
j=1 e

−λ||x−pj ||2
(16)

The last expression for µi(x) can be rewritten as follows.

µi(x) =
1

1 +
∑

c
j 6=i e

−λ||x−pj ||
2

e−λ||x−pi||
2

(17)

Validity measures

– Dunn’s Index. It was proposed in [3] and it is based on cluster compact-
ness and cluster separatedness. Cluster compactedness for the ith cluster is
denoted by cc(χi) and cluster separatedness for the ith and jth cluster is
denoted by cs(χi, χj). Then

DI =
min1≤i,j≤c;i6=j cs(Gi, Gj)

maxi≤l≤c cc(Gl)

where cc(χi) = maxx,y∈χi
d(x, y), and cs(χi, χj) = minx∈χi,y∈χj

d(x, y).

3.2 Self-organizing maps

4 Reinforcement learning

The key features of reinforcement learning include (see [16] for details)

– Trade-off between exploration and exploitation.
– Consideration of the whole problem of a goal-directed agent interacting with

an uncertain environment.
– Reinforcement learning is near to optimal control theory and stochastic ap-

proximation.

5 Others

Multidimensional scaling. See e.g. [1].

6 Discussion

Why some methods are not appropriate. http://www.analyticbridge.com/profiles/blogs/the-8-worst-pr

References

1. Borg, I., Groenen, P. J. F. (2005) Modern multidimensional scaling: theory and
applications, 2nd edition, Springer

2. Cybenko, G. (1989) Approximation by superpositions of a sigmoidal function,
Mathematical control signals systems 2 303-314.

3. Dunn, C. (1974) Well separated clusters and optimal fuzzy partitions, J. of Cyber-
netics 4 95-104.

4. Funuhashi, K. (1989) On the approximate realization of continuous mappings by
neural networks, Neural networks 2 183-192.

5. Hornik, K., Stinchcombe, M., White, H. (1989) Multilayer feedforward networks
are universal approximators, Neural networks 2 359-366.

http://www.analyticbridge.com/profiles/blogs/the-8-worst-predictive-modeling-techniques

6. Hornik, K., Stinchcombe, M., White, H. (1990) Universal approximation of an un-
known mapping and its derivatives using multilayer feedforward networks, Neural
networks 3 551-560.

7. Hothorn, T., Zeileis, A. (2016) partykit: A Toolkit for Recursive Partytioning.
https://cran.r-project.org/web/packages/partykit/partykit.pdf

8. Keener, R. W. (2010) Theoretical statistics, Springer. p. 130.
9. Martin, J. K. (1997) An exact probability metric for decision tree splitting and

stopping, Machine Learning 28 257-291.
10. Mitchell, T. M., Utgoff, P. E., Banerji, R. (1983) Learning by experimentation:

acquiring and refining problem-solving heuristics, in R. S. Michalski, J. G. Car-
bonell, T. M. Mitchell (eds.) Machine learning: an aritificial intelligence approach,
Morgan Kaufmann 163-190.

11. Muggleton, S., Feng, C. (1992) Efficient induction of logic programs, in S. Muggle-
ton (ed.) Inductive logic programming, Academic-Press, 281-298.

12. Murthy, S. K. (1998) Automatic construction of decision trees from data: A multi-
disciplinary survey, Data Mining and Knowledge Discovery 2 345-389.

13. Ruspini, E. H. (1969) A new approach to clustering, Inform. Control. 15 22-32.
14. Seising, R. (2014) On the history of fuzzy clustering: An interview with Jim Bezdek

and Enrique Ruspini, Archives for the Philosophy and History of Softcomputing
2:1 1-14.

15. Shih, Y.-S. (2004) A note on split selection bias in classification trees, Computa-
tional statistics and data analysis 45 457-466.

16. Sutton, R. S., Barto, A. G. (2012) Reinforcement learning: an introduction, The
MIT Press.

17. Torra, V., Narukawa, Y. (2007) Modeling decisions: information fusion and aggre-
gation operators, Springer.

https://cran.r-project.org/web/packages/partykit/partykit.pdf

Entropy is a measure of information introduced by Shannon. Given a probability dis-
tribution p = (p1, p2, . . . , pn) it is defined as

H(p) =

n
∑

i=1

−pi log2 pi

with 0log0 = 0. To illustrate this definition we consider the following two extreme
cases.

– Note that if we have a fair coin p = (ph, pt) = (1/2, 1/2) where ph is the probability
of heads and pt is the probability of tails, then

H(p) = −(1/2) log2(1/2) − (1/2) log2(1/2) = − log2(1/2) = 1.

This situation corresponds to maximum uncertainty (as both heads and tails have
the same probability) and, thus, informing about the result gives us the maximum
information.

– Note that if we have an unfair coin p = (ph, pt) = (1, 0), that is, it always flips to
heads, then

H(p) = −1 log2 1− 0 log2 0 = 0.

This situation corresponds to minimum uncertainty (we are sure that it will be
heads) and, thus, informing about the result gives us no information at all.

In general, when we have n options and p = (p1, . . . , pn), we have maximum entropy
(corresponding to the case of maximum uncertainty and, thus, when we have maximum
information if we know the outcome) when

p = (p1, . . . , pn) = (1/n, . . . , 1/n).

In this case, the entropy is

H(p) =

n
∑

i=1

−(1/n) log2(1/n) = − log2(1/n).

On the contrary, we have minimum entropy when we have pi = 1 for one of the i in
{1, . . . , n}.

Fig. 5. Definition of entropy.

alcohol

p < 0.001

1

≤ 10.5 > 10.5

volatile.acidity

p < 0.001

2

≤ 0.33 > 0.33

sulphates

p = 0.016

3

≤ 0.65> 0.65

Node 4 (n = 27)

3
4
5
6
7
8

Node 5 (n = 58)

3
4
5
6
7
8

volatile.acidity

p < 0.001

6

≤ 0.65> 0.65

alcohol

p < 0.001

7

≤ 9.8 > 9.8

tsd

p < 0.001

8

≤ 39> 39

Node 9 (n = 171)

3
4
5
6
7
8

pH

p = 0.014

10

≤ 3.4> 3.4

Node 11 (n = 205)

3
4
5
6
7
8

Node 12 (n = 53)

3
4
5
6
7
8
Node 13 (n = 228)

3
4
5
6
7
8

fixed.acidity

p = 0.007

14

≤ 8.5> 8.5

Node 15 (n = 172)

3
4
5
6
7
8

Node 16 (n = 69)

3
4
5
6
7
8

volatile.acidity

p < 0.001

17

≤ 0.865 > 0.865

sulphates

p < 0.001

18

≤ 0.63 > 0.63

volatile.acidity

p < 0.001

19

≤ 0.31> 0.31

Node 20 (n = 33)

3
4
5
6
7
8
Node 21 (n = 207)

3
4
5
6
7
8

alcohol

p < 0.001

22

≤ 11.5> 11.5

tsd

p = 0.007

23

≤ 49> 49

volatile.acidity

p = 0.005

24

≤ 0.39> 0.39

Node 25 (n = 72)

3
4
5
6
7
8

Node 26 (n = 80)

3
4
5
6
7
8

Node 27 (n = 55)

3
4
5
6
7
8
Node 28 (n = 142)

3
4
5
6
7
8

Node 29 (n = 27)

3
4
5
6
7
8

Fig. 6. Decision tree.

y:

x:

Fig. 7. Neural network.

f f θ

Fig. 8. Neuron with four inputs: (left) without bias, (right) with bias.

10813110312613011910612311813211013614114512512114410113714911611114811314014214610910411713810512913315071128139115122114102143 13511214712412773841341206988667677555978875153865257759874796492 61995894 10767855691627268839395100899697 636580605490708182 423031261035132463653828294111850840 2374334481493917333415166192132371149454720224424271225

0 2 4 6

C
lu

s
te

r D
e
n

d
ro

g
ra

m

h
c
lu

s
t (*, "c

o
m

p
le

te
")

d
is

t(iris
[, 1

:4
])

Height

Fig. 9. Dendrogram corresponding to the Iris dataset using the function hclust

of R.

	Artificial Intelligence: a concise introduction
	Vicenç Torra

